RF Toolbox™
User's Guide

<

MATLAB

R2017a ,} MathWorks:

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

RF Toolbox™ User's Guide
© COPYRIGHT 2004—-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004
August 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14)
Revised for Version 1.0.1 (Release 14+)
Revised for Version 1.1 (Release 14SP2)
Revised for Version 1.2 (Release 14SP3)
Revised for Version 1.3 (Release 2006a)
Revised for Version 2.0 (Release 2006b)
Revised for Version 2.1 (Release 2007a)
Revised for Version 2.2 (Release 2007b)
Revised for Version 2.3 (Release 2008a)
Revised for Version 2.4 (Release 2008b)
Revised for Version 2.5 (Release 2009a)
Revised for Version 2.6 (Release 2009b)
Revised for Version 2.7 (Release 2010a)
Revised for Version 2.8 (Release 2010b)
Revised for Version 2.8.1 (Release 2011a)
Revised for Version 2.9 (Release 2011b)
Revised for Version 2.10 (Release 2012a)
Revised for Version 2.11 (Release 2012b)
Revised for Version 2.12 (Release 2013a)
Revised for Version 2.13 (Release 2013b)
Revised for Version 2.14 (Release 2014a)
Revised for Version 2.15 (Release 2014b)
Revised for Version 2.16 (Release 2015a)
Revised for Version 2.17 (Release 2015b)
Revised for Version 3.0 (Release 2016a)
Revised for Version 3.1 (Release 2016b)
Revised for Version 3.2 (Release 2017a)

Contents

Getting Started
RF Toolbox Product Description 1-2
Key Features i, 1-2
Related Products 1-3
RF Objects e 14
S-Parameter Notation 1-6
Define S-Parameters0..... 1-6
Refer to S-Parameters Using Character Vector 1-7
RF Analysis 1-8
Model a Cascaded RF Network 1-10
OVEIVIEW . . ittt it e et et e e e e 1-10
Create RF Components 1-10
Specify Component Data 1-11
Validate RF Components 1-11
Build and Simulate the Network 1-14
Analyze Simulation Results 1-14
Analyze a Transmission Line 1-18
OVEIVIEW . . ittt e e e e e e e 1-18
Build and Simulate the Transmission Line 1-18
Compute the Transmission Line Transfer Function and Time-
Domain Response 1-18
Export a Verilog-A Model 1-23
Using RF Measurement Testbench 1-25
Introduction 1-25
Device Under Test Subsystem 1-27
RF Measurement Unit 1-28

vi

RF Measurement Unit Parameters 1-30

RF Objects

2|

RF Data Objects, 2-2
OVEIVIEW . o ittt e e e e e e e 2-2
Typesof Data 2-2
Available Data Objects 2-2
Data Object Methods 2-3

RF Circuit Objects 2-4
Overview of RF Circuit Objects 2-4
Components Versus Networks 2-4
Available Components and Networks 2-5
Circuit Object Methods 2-6

RF Model Objects 2-9
Overview of RF Model Objects 2-9
Available Model Objects 2-9
Model Object Methods 2-9

RF Network Parameter Objects 2-11
Overview of Network Parameter Objects 2-11
Available Network Parameter Objects 2-11
Network Parameter Object Functions 2-11

Model an RF Component

3

Create RF Objects 3-2
Construct a New Object 3-2
Copy an Existing Object 3-3

Specify or Import Component Data 3-5
RF Object Properties, 3-5
Set Property Values 3-5

Contents

Import Property Values from Data Files
Use Data Objects to Specify Circuit Properties
Retrieve Property Values
Reference Properties Directly Using Dot Notation

Specify Operating Conditions

Available Operating Conditions
Set Operating Conditionsccvueuun...
Display Available Operating Condition Values

Process File Data for Analysis

Convert Single-Ended S-Parameters to Mixed-Mode S-
Parameters

Extract M-Port S-Parameters from N-Port S-Parameters . .

Cascade N-Port S-Parameters

Analyze and Plot RF Components

Analyze Networks in the Frequency Domain
Visualize Component and Network Data
Compute and Plot Time-Domain Specifications

Export Component DatatoaFile

Available Export Formats
How to Export Object Data
Export Object Data

Basic Operations with RF Objects

Read and Analyze RF Data from a Touchstone Data File . . .
De-Embed S-Parameters

3-10
3-13
3-14

3-16
3-16
3-16
3-17

3-18

3-18
3-19
3-21

3-23
3-23
3-23
3-32

3-35
3-35
3-35
3-36

3-38
3-38
3-40

Export Verilog-A Models

4

Model RF Objects Using Verilog-A

OVEIVIEW . ot ittt e e e e e e e e
Behavioral Modeling Using Verilog-A
Supported Verilog-A Models

Export a Verilog-A Model

Represent a Circuit Object with a Model Object

4-2
4-2
4-2
4-3

4-4
4-4

vii

Write a Verilog-A Module 4-5

The RF Design and Analysis App

S|

The RF Design and Analysis App 5-2
What Is the RF Design and Analysis App? 5-2
Open the RF Design and Analysis App 5-2
The RF Design and Analysis Window 5-3
The RF Design and Analysis App Workflow 5-4

Create and Import Circuits 5-6
Circuits in the RF Design and Analysis App 5-6
Create RF Components 5-6
Create RF Networks 5-10
Import RF Objects into the RF Design and Analysis App . . . 5-16

Modify Component Data 5-20

Analyze Circuits 5-21

Export RF Objects 5-24
Export Components and Networks 5-24
Export to the Workspace 5-24
Exporttoa File 5-26

Manage Circuits and Sessions 5-29
Working with Circuits 5-29
Working with the RF Design and Analysis App Sessions . . . 5-30

Model an RF Network 5-33
OVEIVIEW . ottt ettt e e 5-33
Start the RF Design and Analysis App 5-33
Create the Amplifier Network 5-33
Populate the Amplifier Network 5-36
Analyze the Amplifier Network 5-39
Export the Network to the Workspace 5-41

viii Contents

Objects — Alphabetical List

6/

Methods — Alphabetical List

7]

Functions — Alphabetical List

8]

AMP File Format

4

AMP File Data Sections 9-2
OVEIVIEW . ottt et e e e 9-2
Denoting Comments 9-3
Data Sections 9-3
S, Y, or Z Network Parameters 9-3
Noise Parameters 9-5
Noise Figure Data 9-6
Power Data e 9-8
IP3 Data e 9-10
Inconsistent Data Sections 9-11

ix

RF Online

10|

App Reference

11

X Contents

Getting Started

“RF Toolbox Product Description” on page 1-2
“Related Products” on page 1-3

“RF Objects” on page 1-4

“S-Parameter Notation” on page 1-6

“RF Analysis” on page 1-8

“Model a Cascaded RF Network” on page 1-10
“Analyze a Transmission Line” on page 1-18

“Using RF Measurement Testbench” on page 1-25

1 Getting Started

RF Toolbox Product Description

1-2

Design, model, and analyze networks of RF components

RF Toolbox provides functions, objects, and apps for designing, modeling, analyzing, and
visualizing networks of radio frequency (RF) components. You can use RF Toolbox for
wireless communications, radar, and signal integrity projects.

With RF Toolbox you can build networks of RF components such as filters, transmission
lines, amplifiers, and mixers. Components can be specified using measurement data,
network parameters, or physical properties. You can calculate S-parameters, convert
among S, Y, Z, ABCD, h, g, and T network parameters, and visualize RF data using

rectangular and polar plots and Smith® Charts.

The RF Budget Analyzer app lets you analyze transmitters and receivers in terms of
noise figure, gain, and IP3. You can generate RF Blockset™ testbenches and validate
analytical results against circuit envelope simulations.

Using the rational function fitting method, you can build models of backplanes and

interconnects, and export them as Simulink® blocks or as Verilog-A modules for SerDes
design.

RF Toolbox provides functions to manipulate and automate RF measurement data
analysis, including de-embedding, enforcing passivity, and computing group delay.

Key Features

+ RF filters, transmission lines, amplifiers, and mixers specified by measurement data,
network parameters, or physical properties

* S-parameter calculation for RF component networks

* RF Budget Analyzer app for calculating noise figure, gain, and IP3 of RF transceivers
and for generating RF Blockset testbenches

+ Rational function fitting method for building models and exporting them as Simulink
blocks or Verilog-A modules

* De-embedding of N-port S-parameters measurement data
* Conversion among S, Y, Z, ABCD, h, g, and T network parameters

* RF data visualization using rectangular and polar plots and Smith Charts

Related Products

Related Products

Several MathWorks® products are especially relevant to the kinds of tasks you can
perform with RF Toolbox software. The following table summarizes the related products
and describes how they complement the features of the toolbox.

Product

Description

“Communications System Toolbox”

Simulink blocks and MATLAB®

functions for time-domain simulation of
modulation and demodulation of a wireless
communications signal.

“DSP System Toolbox”

Simulink blocks and MATLAB functions
for time-domain simulation of for filtering
the modulated communication signal.

“RF Blockset”

Circuit-envelope and equivalent-baseband
simulation of RF components in Simulink.

“Signal Processing Toolbox”

MATLAB functions for filtering the
modulated communication signal.

1-3

1 Getting Started

RF Objects

1-4

RF Toolbox software uses objects to represent RF components and networks. You
create an object using the object's constructor. Every object has predefined fields
called properties. The properties define the characteristics of the object. Each property
associated with an object is assigned a value. Every object has a set of methods, which
are operations that you can perform on the object. Methods are similar to functions
except that they only act on an object.

The following table summarizes the types of objects that are available in the toolbox
and describes the uses of each one. For more information on a particular type of object,
including a list of the available objects and methods, follow the link in the table to the
documentation for that object type.

Object Type Name Description

“RF Data Objects” on page rfdata Stores data for use by other

2-2 RF objects or for plotting and
network parameter conversion.

“RF Circuit Objects” on page rfckt Represents RF components

2-4 and networks using network

parameters and physical
properties for frequency-domain

simulation.
“RF Model Objects” on page rfmodel Represents RF components
2-9 and networks mathematically

for computing time-domain

behavior and exporting models.

Each name in the preceding table is the prefix to the names of all object constructors of
that type. The constructors use dot notation that consists of the object type, followed by
a dot and then the component name. The component name is also called the class. For
information on how to construct an RF object from the command line using dot notation,
see “Create RF Objects” on page 3-2.

You use a different form of dot notation to specify object properties, as described in
“Reference Properties Directly Using Dot Notation” on page 3-14. This is just one

way to define component data. For more information on object properties, see “Specify or
Import Component Data” on page 3-5.

RF Objects

You use object methods to perform frequency-domain analysis and visualize the results.
For more information, see “Analyze and Plot RF Components” on page 3-23.

Note: The toolbox also provides a graphical interface for creating and analyzing circuit
objects. For more information, see “The RF Design and Analysis App” on page 5-2.

1-5

1 Getting Started

S-Parameter Notation

1-6

In this section...

“Define S-Parameters” on page 1-6
“Refer to S-Parameters Using Character Vector” on page 1-7

Define S-Parameters

RF Toolbox software uses matrix notation to specify S-parameters. The indices of an S-
parameter matrix correspond to the port numbers of the network that the data represent.
For example, to define a matrix of 50-ohm, 2-port S-parameters, type:

sll = 0.61*exp(J*165/180*pi);
s21 = 3.72*exp(J*59/180*pi);
s12 = 0.05*exp(J*42/180*pi);
s22 = 0.45*exp(J*(-48/180)*pi);

s _params = [s11 s12; s21 s22];

RF Toolbox functions that operate on S_params assume:

+ s _params(1,1) corresponds to the reflection coefficient at port 1, S;;.

*+ s _params(2,1) corresponds to the transmission coefficient from port 1 to port 2, Ss;.
+ s _params(1,2) corresponds to the transmission coefficient from port 2 to port 1, S;s.
+ s _params(2,2) corresponds to the reflection coefficient at port 2, S,.

RF Toolbox software also supports three-dimensional arrays of S-parameters. The

third dimension of an S-parameter array corresponds to S-parameter data at different
frequencies. The following figure illustrates this convention.

S-parameters . = —
L Rl =g
175
S11 | S12 T 7%
IV
Sop | Soo Pt
-‘”f,g Frequencies
fa
fi

S-Parameter Notation

Refer to S-Parameters Using Character Vector

RF Toolbox software uses character vector to refer to S-parameters in plotting and
calculation methods, such as plot. These character vector have one of the following two
forms:

* "Snm® — Use this syntax if n and m are both less than 10.

* "Sn,m" — Use this syntax if one or both are greater than 10. "Sn,m" is not a valid
syntax when both n and m are less than 10.

The indices n and m are the port numbers for the S-parameters.

Most toolbox objects only analyze 2-port S-parameters. The following objects analyze S-
parameters with more than two ports:

+ rfckt.passive on page 6-161
+ rfckt.datafile on page 6-90
+ rfdata.data on page 6-205

You can get 2-port parameters from S-parameters with an arbitrary number of ports
using one or more of the following steps:

+ Extract 2-port S-parameters from N-port S-parameters.

See “Extract M-Port S-Parameters from N-Port S-Parameters” on page 3-19.

+ Convert single-ended 4-port parameters to differential 2-port parameters.

See “Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters” on page
3-18.

1-7

1 Getting Started

RF Analysis

1-8

When you analyze an RF circuit using RF Toolbox software, your workflow might include
the following tasks:

1 Select RF circuit objects to represent the components of your RF network.

See “Create RF Objects” on page 3-2.
2 Define component data by:
+ Specifying network parameters or physical properties (see “Set Property Values”
on page 3-5).

+ Importing data from an industry-standard Touchstone file, a MathWorks AMP

file, an Agilent® P2D or S2D file, or the MATLAB workspace (see “Import
Property Values from Data Files” on page 3-8).

* Where applicable, selecting operating condition values (see “Specify Operating
Conditions” on page 3-16).

3 Where applicable, perform network parameter conversions on imported file data.

See “Process File Data for Analysis” on page 3-18.

4 Integrate components to form a cascade, hybrid, parallel, or series network.

See “Construct Networks of Specified Components” on page 3-7.

5 Analyze the network in the frequency domain.

See “Analyze Networks in the Frequency Domain” on page 3-23.

6 Generate plots to gain insight into network behavior.

The following plots and charts are available in the toolbox:

Rectangular plots
+ Polar plots
Smith Charts
+ Budget plots (for cascaded S-parameters)

See “Visualize Component and Network Data” on page 3-23.

7 Compute the network transfer function.

RF Analysis

10

See “Compute the Network Transfer Function” on page 3-32.

Create an RF model object that describes the transfer function analytically.

See “Fit a Model Object to Circuit Object Data” on page 3-32.

Plot the time-domain response.

See “Compute and Plotting the Time-Domain Response” on page 3-33.
Export a Verilog-A description of the network.

See “Export a Verilog-A Model” on page 4-4.

1-9

1 Getting Started

Model a Cascaded RF Network

1-10

In this section...

“Overview” on page 1-10

“Create RF Components” on page 1-10

“Specify Component Data” on page 1-11
“Validate RF Components” on page 1-11

“Build and Simulate the Network” on page 1-14

“Analyze Simulation Results” on page 1-14

Overview

In this example, you use the RF Toolbox command-line interface to model the gain and
noise figure of a cascaded network. You analyze the network in the frequency domain
and plot the results.

Note: To learn how to use RF Design and Analysis App, to perform these tasks, see
“Model an RF Network ” on page 5-33.

The network that you use in this example consists of an amplifier and two transmission
lines. The toolbox represents RF components and RF networks using RF circuit objects.
You learn how to create and manipulate these objects to analyze the cascaded amplifier
network.

Create RF Components

Type the following set of commands at the MATLAB prompt to create three circuit
(rfckt) objects with the default property values. These circuit objects represent the two
transmission lines and the amplifier:

FirstCkt = rfckt.txline;
SecondCkt = rfckt.amplifier;
ThirdCkt = rfckt.txline;

Model a Cascaded RF Network

Specify Component Data

In this part of the example, you specify the following component properties:
* “Transmission Line Properties” on page 1-11

+ “Amplifier Properties” on page 1-11

Transmission Line Properties

1 Type the following command at the MATLAB prompt to change the line length of the
first transmission line, FirstCKt, to 12:
FirstCkt.LineLength = 12;

2 Type the following command at the MATLAB prompt to change the line length of the
second transmission line, ThirdCkt, to 0.025 and to change the phase velocity to
2.0e8:

ThirdCkt.LineLength = 0.025;
ThirdCkt.PV = 2.0e8;

Amplifier Properties

1 Type the following command at the MATLAB prompt to import network parameters,
noise data, and power data from the default.amp file into the amplifier,
SecondCkt:

read(SecondCkt, “default.amp®);

2 Type the following command at the MATLAB prompt to change the interpolation
method of the amplifier, SecondCKt, to cubic:

SecondCkt. IntpType = “cubic”;
The IntpType property tells the toolbox how to interpolate the network parameters,

noise data, and power data when you analyze the amplifier at frequencies other than
those specified in the file.

Validate RF Components

In this part of the example, you plot the network parameters and power data (output
power versus input power) to validate the behavior of the amplifier.

1-11

1 Getting Started

1 Type the following set of commands at the MATLAB prompt to use the smith
command to plot the original S;; and Sss parameters of the amplifier (SecondCkt) on
a Z Smith Chart:

figure
lineseriesl = smith(SecondCkt,"S11","S22");
lineseriesl(l).LineStyle "

lineseriesl(l).LineWidth = 1;
lineseriesl(2).LineStyle = ":7;
lineseriesl(2).LineWidth = 1;

legend show

1-12

Model a Cascaded RF Network

Note: The plot shows the S-parameters over the frequency range for which network
data is specified in the default.amp file — from 1 GHz to 2.9 GHz.

2 Type the following set of commands at the MATLAB prompt to use the RF Toolbox
plot command to plot the amplifier (SecondCkt) output power (P,,;) as a function of
input power (P;,), both in decibels referenced to one milliwatt (dBm), on an X-Y plane
plot:

figure
plot(SecondCkt, "Pout”, "dBm*)
legend show

32 T T T T T T T T T
P o I_rl[Freq =2 1|GHz])

0 2 4 G 8 10 12 14 16 18 20

1-13

1 Getting Started

1-14

Note: The plot shows the power data at 2.1 GHz because this frequency is the one for
which power data is specified in the default.amp file.

Build and Simulate the Network

In this part of the example, you create a circuit object to represent the cascaded amplifier
and analyze the object in the frequency domain.

1

Type the following command at the MATLAB prompt to cascade the three circuit
objects to form a new cascaded circuit object, CascadedCkt:

FirstCkt = rfckt.txline;
SecondCkt = rfckt.amplifier;
ThirdCkt = rfckt.txline;

CascadedCkt = rfckt.cascade("Ckts",{FirstCkt,SecondCkt, ...
ThirdCkt});

Type the following set of commands at the MATLAB prompt to define the range of
frequencies over which to analyze the cascaded circuit, and then run the analysis:

f = (1.0e9:1e7:2.9e9);
analyze(CascadedCkt,T);

Analyze Simulation Results

In this part of the example, you analyze the results of the simulation by plotting data for
the circuit object that represents the cascaded amplifier network.

1

Type the following set of commands at the MATLAB prompt to use the smith
command to plot the S;; and Sy, parameters of the cascaded amplifier network on a Z
Smith Chart:

figure
lineseries2 = smith(CascadedCkt, "S11",7°S22%,"z%);
lineseries2(l).LineStyle ="-";

lineseries2(l).LineWidth =1;
lineseries2(2).LineStyle = ":7;
lineseries2(2).LineWidth = 1;

legend show

Model a Cascaded RF Network

§1.0

Type the following set of commands at the MATLAB prompt to use the plot
command to plot the Sy; parameter of the cascaded network, which represents the
network gain, on an X-Y plane:

figure

plot(CascadedCkt, "S21","dB")
legend show

1-15

1 Getting Started

N

[
=
T
o
o
I

21

- —
o =2}
T T
I I

—

B
T
1

Magnitude (decibels)
=R

2 i i i i i i i i i
1 1.2 1.4 1.6 18 2 2.2 24 26 28 3

Freq [GHz]

3 Type the following set of commands at the MATLAB prompt to use the plot
command to create a budget plot of the Sy; parameter and the noise figure of the
amplifier network:

figure

plot(CascadedCkt, "budget”, "S21°,"NF")
legend show

1-16

Model a Cascaded RF Network

Magnitude (decibels)

28 ~

REVA

15

10 4

2

3
Freq [GHz] 1 Stage of cascade

The budget plot shows parameters as a function of frequency by circuit index.
Components are indexed based on their position in the network. In this example:

Circuit index one corresponds to FirstCkt.
+ Circuit index two corresponds to SecondCKkt.
* Circuit index three corresponds to ThirdCkt.

The curve for each index represents the contributions of the RF components up to
and including the component at that index.

1-17

1 Getting Started

Analyze a Transmission Line

1-18

In this section...

“Overview” on page 1-18
“Build and Simulate the Transmission Line” on page 1-18

“Compute the Transmission Line Transfer Function and Time-Domain Response” on
page 1-18

“Export a Verilog-A Model” on page 1-23

Overview

In this example, you use the RF Toolbox command-line interface to model the time-
domain response of a parallel plate transmission line. You analyze the network in the
frequency domain, compute and plot the time-domain response of the network, and
export a Verilog-A model of the transmission line for use in system-level simulations.

Build and Simulate the Transmission Line

1 Type the following command at the MATLAB prompt to create a circuit (rfckt)
object to represent the transmission line, which is 0.1 meters long and 0.05 meters
wide:
tline = rfckt.parallelplate("LineLength®,0.1,*Width",0.05);

2 Type the following set of commands at the MATLAB prompt to define the range of
frequencies over which to analyze the transmission line and then run the analysis:

T = [1.0e9:1e7:2.9e9];
analyze(tline,f);

Compute the Transmission Line Transfer Function and Time-Domain
Response

This part of the example illustrates how to perform the following tasks:

+ “Calculate the Transfer Function” on page 1-19
+ “Fit and Validate the Transfer Function Model” on page 1-19

+ “Compute and Plot the Time-Domain Response” on page 1-21

Analyze a Transmission Line

Calculate the Transfer Function

1

Type the following command at the MATLAB prompt to extract the computed S-
parameter values and the corresponding frequency values for the transmission line:

[S_Params, Freq] = extract(tline,"S Parameters”);

Type the following command at the MATLAB prompt to compute the transfer
function from the frequency response data using the s2tf function:

TrFunc = s2tf(S_Params);

Fit and Validate the Transfer Function Model

In this part of the example, you fit a rational function model to the transfer function.
The toolbox stores the fitting results in an rfmodel object. You use the RF Toolbox
fregresp method to validate the fit of the rational function model.

1

Type the following command at the MATLAB prompt to fit a rational function to the
computed data and store the result in an rfmodel object:

RationalFunc = rationalfit(Freq,TrFunc)

RationalFunc
rfmodel .rational with properties:

A: [7x1 double]
C: [7x1 double]
D: O
Delay: O
Name: "Rational Function*®

Type the following command at the MATLAB prompt to compute the frequency
response of the fitted model data:

[fresp,freq] = freqresp(RationalFunc,Freq);

Type the following set of commands at the MATLAB prompt to plot the amplitude of
the frequency response of the fitted model data and that of the computed data:

figure
plot(freq/1e9,20*1ogl0(abs(fresp)),freq/1e9,20*1ogl0(abs(TrFunc)))
xlabel ("Frequency, GHz")

1-19

1 Getting Started

ylabel ("Amplitude, dB*)
legend("Fitted Model Data“®,"Computed Data")

D T T T T -II T T T
, Fitted Model Data
\ i Computed Data
_5 i !! II| I. II
o \ { f
=] | | f
- f |
© | . .
E [|
E I'I .'I IIl
.|:E \ .'I lII
II i II
A0} \ ' \ /
| I _-"ll.
-~ N /
_1 5 i i i i i i i i i
1 12 14 16 18 2 22 24 26 248

Frequency, GHz

Note: The amplitude of the model data is very close to the amplitude of the computed
data. You can control the tradeoff between model accuracy and model complexity by
specifying the optional tolerance argument, tol, to the rational it function, as
described in “Represent a Circuit Object with a Model Object” on page 4-4.

4 Type the following set of commands at the MATLAB prompt to plot the phase angle
of the frequency response of the fitted model data and that of the computed data:

figure

plot(freq/1e9,unwrap(angle(fresp)),. ..

1-20

Analyze a Transmission Line

freq/1e9,unwrap(angle(TrFunc)))
xlabel ("Frequency, GHz")
ylabel ("Phase Angle, radians®)
legend("Fitted Data®, "Computed Data®)

Fhase Angle, radians

Fitted Data
Computed Data

-3 L

1 12 14

16

18

2

22
Frequency, GHz

2.4

26 28

Note: The phase angle of the model data is very close to the phase angle of the

computed data.

Compute and Plot the Time-Domain Response

In this part of the example, you compute and plot the time-domain response of the

transmission line.

1-21

1 Getting Started

1 Type the following set of commands at the MATLAB prompt to create a random
input signal and compute the time response, tresp, of the fitted model data to the
input signal:

SampleTime = 1le-12;
NumberOfSamples = le4;
OverSamplingFactor = 25;
InputTime = double((1:NumberOfSamples)")*SampleTime;
InputSignal = ...

sign(randn(l, ceil(NumberOfSamples/OverSamplingFactor)));
InputSignal = repmat(InputSignal, [OverSamplingFactor, 1]);
InputSignal = InputSignal(:);

[tresp,t] = timeresp(RationalFunc, InputSignal,SampleTime);

2 Type the following set of commands at the MATLAB prompt to plot the time
response of the fitted model data:

figure

plot(t,tresp)

xlabel ("Time (seconds)”)

ylabel ("Response to Random Input Signal*®)

1-22

Analyze a Transmission Line

=
.
d:——_
=

|

]

-
T

©
g
T

Response to Random Input Signal

1
o]
[
T
—_—
—
i

041 u ||

-0.5 '
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds) w108

Export a Verilog-A Model

In this part of the example, you export a Verilog-A model of the transmission line. You
can use this model in other simulation tools for detailed time-domain analysis and
system simulations.

The following code illustrates how to use the writeva method to write a Verilog-A
module for RationalFunc to the file tline.va. The module has one input, thine_in,
and one output, tline_out. The method returns a status of True, if the operation is
successful, and False if it is unsuccessful.

status = writeva(RationalFunc,"tline", "tline_in","tline_out")

1-23

1 Getting Started

For more information on the writeva method and its arguments, see the writeva
reference page. For more information on Verilog-A models, see “Export a Verilog-A
Model” on page 4-4.

1-24

Using RF Measurement Testbench

Using RF Measurement Testbench

In this section...

“Introduction” on page 1-25

“Device Under Test Subsystem” on page 1-27

“RF Measurement Unit” on page 1-28

“RF Measurement Unit Parameters” on page 1-30

Introduction

Use the RF Measurement testbench to verify the cumulative gain, noise figure, and
nonlinearity (IP3) values of an RF-to-RF system. To use the testbench, create a system
in the RF Budget Analyzer app and click Export > Export to Measurement

Testbench.

1-25

1 Getting Started

(3 untitied * - Simulink prerelease use =B
File Edit view Display Diagram Simulation Analysis Code Tools Help
- - WE-E-@4gOP » -« » @ v -
unisied
& |[Fajuritiiea b -
= RF Measurement Testbench
Opan tha Block Paramoters dialog of the RF Measuremont Linit
= bilock for méasurement-Spocific parsmators and instnscions.
= Gain (dB) d
O ——{Stimulus RF Measurement Unit
Response RE Busal
Gain 0 a8
NF 0 a8
OlF3 Inf dém
IP3 Inf dim
[Device
In Under Out
Test
S
|| Ready B FwedStepDiscrete

The testbench is made up of two subsystems:

* RF Measurement Unit
+ Device Under Test

The testbench display shows the verified output values of gain, NF (noise figure), and IP3
(third-order intercept).

1-26

Using RF Measurement Testbench

Device Under Test Subsystem

Device
In Under Out
Test

The Device Under Test subsystem contains the RF system exported from the app. To see
the RF system, double-click the subsystem.

File Edit View Display Diagram Simulation Analysis Code Tooks Help

? 7 1~ u‘ﬁ s 5 W Hf "-Elrl b :'-'-‘: T | = £z L = L v |inf & B B
DUT_Subsystem ™ | Tegthench

& |Pajuntited b [Pa[OUT_Subsystem b -
=%

4

[

IF Filter Mexer RF Filwr 1 Ampifar 1 Armpifer 2 RF Filwr I

E!ﬂﬂ'i

1003 FreedStepDiscrete

1-27

1 Getting Started

RF Measurement Unit

Gain (dB)
Stimulus RF Measurement Unit
Response

The RF Measurement Unit subsystem consists of a Simulink Controller and RF Blockset
Circuit Envelope interface. The RF Blockset interface is used as input and output from
the DUT.

1-28

Using RF Measurement Testbench

Simulink Controller

it

Enatied_NoiseF igure_Tesibenth

RF Blockset Circuit Envelope Interface

L b—re-o

(O

1-29

1 Getting Started

RF Measurement Unit Parameters

Block Parameters: Testbench RF to RF 2

RF Measurement Unit (mask) (link)
Measures RF properties of a system.
Simulate noise (both stimulus and DUT internal}

Measured quantity: [Gain -

Parameters Instructions |

Input power amplitude (dBm):

70 X
| j'_'
-90.0 60.0
-30

Input frequency (Hz): 2e9 E]

Output frequency (Hz): 1e9

=

Baseband bandwidth (Hz): 100e6 E]

[OK][Cancel][Help] Apply

A

Simulate noise (both stimulus and DUT internal) — Select this check box to
enable noise modeling in the stimulus signal entering the DUT and inside the DUT.

1-30

Using RF Measurement Testbench

Measured quantity — Choose the quantity you want to verify from:

Gain — Measure the transducer gain of the converter, assuming a load of 50 ohm.
If you choose only I or only Q from Response branch, you see only half the value
of the measured gain.

NF — Measure the noise figure value at the output of the converter.
* IP3 — Measure the output or input third-order intercept (IP3).
IP2 — Measure the output or input second-order intercept (IP2).

+ DC Offset — Measure the DC level interference centered on the desired signal
due to LO leakage mixing with input signal.

The contents in the Instructions tab changes according to the Measured quantity.

IP Type — Choose the type of intercept points (IP) to measure: Output referred or
Input referred.

By default, the testbench measures Output referred. This option is available when
you set the Measured quantity to 1P2 or 1P3.

The two tabs are: Parameters and Instructions.

Parameters

Input power amplitude (dBm) — Input power to the DUT. You can change the
input power by manually specifying or by turning the knob. When measuring DC
Offset, this input field is Input RMS voltage (dBmV), because the Offset is
measured in voltage units. The specified voltage represents the voltage falling on the
input ports of the DUT.

Input frequency (Hz) — Carrier frequency of the DUT.
Output frequency (Hz) — Output frequency of the DUT.
Baseband bandwidth (Hz) — Bandwidth of the input signal.

Ratio of test tone frequency to baseband bandwidth — Position of the test tones
used for IP3 measurements. By default, the value is 1/8.

This option is available when you set the Measured quantity to 1P2, 1P3, or DC
Offset.

1-31

1 Getting Started

1-32

Instructions

e

Block Parameters: Testbench RF to RF P

RF Measurement Unit (mask) (link)
Measures RF properties of a system.
Simulate noise (both stimulus and DUT internal)

Measured quantity: [Gain -

Parameters Instructions

1. For accurate gain measurement, please uncheck the "Simulate noise’
checkbox.

2. For high input power, the measured gain may be affected by
nonlinearities of the Device Under Test (DUT) and differ from the gain
calculated in the RF budget app. In this case, use the knob to reduce the
input power amplitude value until the resulting gain value settles down.

3. Other discrepancies between the measured gain and that calculated in
the RF budget app may originate from the more realistic account of the
DUT performance obtained using the SimRF simulation. In this case,
verify that the DUT performance is evaluated correctly using RF budget
calculations. For more details, see the RF budget app documentation.

[OK H Cancel H Help Apply

Instructions for Gain Verification

Using RF Measurement Testbench

Clear Simulate noise (both stimulus and DUT) for accurate gain verification.
Select the check box for account for noise.

Change the Input power amplitude (dBm) or turn the knob to reduce the input
power amplitude. For high input power, nonlinearities in the DUT can affect the gain
measurements.

Instructions for NF Verification

The testbench verifies the spot NF calculated. This calculation assumes a frequency-
independent system within a given bandwidth. To simulate a frequency-independent
system and calculate the correct NF value, reduce the baseband bandwidth until this
condition is fulfilled. In common RF systems, the bandwidth should be reduced below
1 kHz for NF testing.

Change Input power amplitude (dBm) or turn the knob to reduce or increase the
input power amplitude. For high input power, nonlinearities in the DUT can affect
the NF measurements. For low input power, the signal is too close or below the noise
floor of the system. As a result, the NF fails to converge.

Instructions for OIP3 and IIP3 Verification

Clear Simulate noise (both stimulus and DUT) for accurate OIP3 and IIP3
verification.

Change Input power amplitude (dBm) or turn the knob to reduce the input power
amplitude. For high input power, higher-order nonlinearities in the DUT can affect
the OIP3 and ITP3 measurements.

For all measurement verifications using the testbench, you cannot correct result
discrepancies using the RF Budget Analyzer app. The RF Blockset testbench provides
true RF circuit simulation that incorporates RF phenomena including saturation

and interaction between multiple tones and harmonics in nonlinear devices. These

RF phenomena are not yet incorporated in RF Budget Analyzer, leading to some
differences in the values between the testbench and the app.

Instructions for DC Offset Measurement

Clear Simulate noise (both stimulus and DUT) for accurate DC offset
measurement.

Correct calculation of the DC offset assumes a frequency-independent system in the
frequencies surrounding the test tones. Reduce the frequency separation between
the test tones or reduce the baseband bandwidth until this condition is fulfilled. In
common RF systems, the bandwidth is reduced below 1 KHz for DC offset testing.

1-33

1 Getting Started

1-34

+ . Change Input RMS voltage amplitude (dBmV) or turn the knob to reduce
the input RMS voltage amplitude. For high input RMS voltage, higher-order
nonlinearities in the DUT can affect the DC offset measurements

For all measurement verifications using the testbench, you cannot correct result
discrepancies using the RF Budget Analyzer app. The RF Blockset measurement
testbench provides true RF circuit simulation that incorporates RF phenomena including
saturation and interaction between multiple tones and harmonics in nonlinear devices.
These RF phenomena are not yet incorporated in RF Budget Analyzer, leading to some
differences in the values between the testbench and the app.

See Also
RF Budget Analyzer

RF Obijects

+ “RF Data Objects” on page 2-2

+ “RF Circuit Objects” on page 2-4

+ “RF Model Objects” on page 2-9

* “RF Network Parameter Objects” on page 2-11

2 rr Objects

RF Data Objects

2-2

In this section...

“Overview” on page 2-2

“Types of Data” on page 2-2
“Available Data Objects” on page 2-2
“Data Object Methods” on page 2-3

Overview

RF Toolbox software uses data (rfdata) objects to store:

+ Component data created from files or from information that you specify in the
MATLAB workspace.

* Analyzed data from a frequency-domain simulation of a circuit object.

You can perform basic tasks, such as plotting and network parameter conversion, on the

data stored in these objects. However, data objects are primarily used to store data for
use by other RF objects.

Types of Data

The toolbox uses RF data objects to store one or more of the following types of data:

* Network parameters

+ Spot noise

* Noise figure

* Third-order intercept point (IP3)

* Power out versus power in

Available Data Obijects

The following table lists the available rfdata object constructors and describes the data
the corresponding objects represent. For more information on a particular object, follow
the link in the table to the reference page for that object.

RF Data Obijects

Constructor Description
rfdata.data Data object containing network parameter data
rfdata.ip3 Data object containing IP3 information

rfdata.mixerspur

Data object containing mixer spur information from an
intermodulation table

rfdata.network

Data object containing network parameter information

rfdata.nf

Data object containing noise figure information

rfdata.noise

Data object containing noise information

rfdata.power

Data object containing power and phase information

Data Object Methods

The following table lists the methods of the data objects, the types of objects on which
each can act, and the purpose of each method.

Method Types of Objects Purpose
extract rfdata.data, Extract specified network parameters from
rfdata.network a circuit or data object and return the result

in an array

read rfdata.data Read RF data parameters from a file to a

new or existing data object.

write rfdata.data Write RF data from a data object to a file.

2-3

2 rr Objects

RF Circuit Objects

2-4

In this section...

“Overview of RF Circuit Objects” on page 2-4
“Components Versus Networks” on page 2-4
“Available Components and Networks” on page 2-5
“Circuit Object Methods” on page 2-6

Overview of RF Circuit Objects

RF Toolbox software uses circuit (rfckt) objects to represent the following components:

+ Circuit components such as amplifiers, transmission lines, and ladder filters
* RLC network components

+ Networks of RF components

The toolbox represents each type of component and network with a different object. You
use these objects to analyze components and networks in the frequency domain.

Components Versus Networks
You define component behavior using network parameters and physical properties.

To specify an individual RF component:

1 Construct a circuit object to represent the component.

2 Specify or import component data.

You define network behavior by specifying the components that make up the network.
These components can be either individual components (such as amplifiers and
transmission lines) or other networks.

To specify an RF network:

1 Build circuit objects to represent the network components.

2 Construct a circuit object to represent the network.

RF Circuit Objects

Note: This object defines how to connect the network components. However, the
network is empty until you specify the components that it contains.

3 Specify, as the Ckts property of the object that represents the network, a list of
components that make up the network.

These procedures are illustrated by example in “Model a Cascaded RF Network” on page

1-10.

Available Components and Networks

To create circuit objects that represent components, you use constructors whose names
describe the components. To create circuit objects that represent networks, you use
constructors whose names describe how the components are connected together.

The following table lists the available rfckt object constructors and describes the
components or networks the corresponding objects represent. For more information on a
particular object, follow the link in the table to the reference page for that object.

Constructor

Description

rfckt._amplifier

Amplifier, described by an rfdata object

rfckt.cascade

Cascaded network, described by the list of components
and networks that comprise it

rfckt.coaxial

Coaxial transmission line, described by dimensions and
electrical characteristics

rfckt.cpw

Coplanar waveguide transmission line, described by
dimensions and electrical characteristics

rfckt.datafile

General circuit, described by a data file

rfckt.delay

Delay line, described by loss and delay

rfckt._hybrid

Hybrid connected network, described by the list of
components and networks that comprise it

rfckt._hybridg

Inverse hybrid connected network, described by the list
of components and networks that comprise it

rfckt. Icbandpasspi

LC bandpass pi network, described by LC values

rfckt.lcbandpasstee

LC bandpass tee network, described by LC values

2-5

2 rr Objects

2-6

Constructor

Description

rfckt. Icbandstoppi

LC bandstop pi network, described by L.C values

rfckt. lcbandstoptee

LC bandstop tee network, described by LC values

rfckt. Ichighpasspi

LC highpass pi network, described by LC values

rfckt. Ichighpasstee

LC highpass tee network, described by LC values

rfckt.lIclowpasspi

LC lowpass pi network, described by L.C values

rfckt. Iclowpasstee

LC lowpass tee network, described by L.C values

rfckt.microstrip

Microstrip transmission line, described by dimensions
and electrical characteristics

rfckt.mixer

Mixer, described by an rfdata object

rfckt._parallel

Parallel connected network, described by the list of
components and networks that comprise it

rfckt.parallelplate

Parallel-plate transmission line, described by dimensions
and electrical characteristics

rfckt.passive

Passive component, described by network parameters

rfckt.rlcgline

RLCG transmission line, described by RLCG values

rfckt.series

Series connected network, described by the list of
components and networks that comprise it

rfckt.seriesrlc

Series RLC network, described by RLC values

rfckt.shuntric

Shunt RLC network, described by RLC values

rfckt.twowire

Two-wire transmission line, described by dimensions and
electrical characteristics

rfckt.txline

General transmission line, described by dimensions and
electrical characteristics

Circuit Object Methods

The following table lists the methods of the circuit objects, the types of objects on which
each can act, and the purpose of each method.

Method Types of Objects

Purpose

analyze

All circuit objects

Analyze a circuit object in the frequency
domain.

RF Circuit Objects

Method Types of Objects Purpose

calculate All circuit objects Calculate specified parameters for a
circuit object.

copy All circuit objects Copy a circuit or data object.

extract All circuit objects Extract specified network parameters
from a circuit or data object, and return
the result in an array.

getdata All circuit objects Get data object containing analyzed
result of a specified circuit object.

getz0 rfckt.txline, Get characteristic impedance of a

rfckt.ricgline,
rfckt._twowire,
rfckt.parallelplate,
rfckt.coaxial,
rfdata.microstrip,
rfckt.cpw

transmission line.

listformat

All circuit objects

List valid formats for a specified circuit
object parameter.

listparam All circuit objects List valid parameters for a specified
circuit object.

loglog All circuit objects Plot specified circuit object parameters
using a log-log scale.

plot All circuit objects Plot the specified circuit object
parameters on an X-Y plane.

plotyy All circuit objects Plot the specified object parameters with
y-axes on both the left and right sides.

polar All circuit objects Plot the specified circuit object
parameters on polar coordinates.

read rfckt.datafile, Read RF data from a file to a new or

rfckt_passive,
rfckt_amplifier,
rfckt.mixer

existing circuit object.

2-7

2 rr Objects

2-8

Method Types of Objects Purpose
restore rfckt.datafile, Restore data to original frequencies of
rfckt.passive, NetworkData for plotting.
rfckt.amplifier,
rfckt._mixer
semi logx All circuit objects Plot the specified circuit object
parameters using a log scale for the X-
axis
semi logy All circuit objects Plot the specified circuit object
parameters using a log scale for the Y-
axis
smith All circuit objects Plot the specified circuit object
parameters on a Smith chart.
write All circuit objects Write RF data from a circuit object to a

file.

RF Model Objects

RF Model Objects

In this section...

“Overview of RF Model Objects” on page 2-9
“Available Model Objects” on page 2-9
“Model Object Methods” on page 2-9

Overview of RF Model Objects

RF Toolbox software uses model (rfmodel) objects to represent components and
measured data mathematically for computing information such as time-domain
response. Each type of model object uses a different mathematical model to represent the
component.

RF model objects provide a high-level component representation for use after you
perform detailed analysis using RF circuit objects. Use RF model objects to:

* Compute time-domain figures of merit for RF components

+ Export Verilog-A models of RF components

Available Model Obijects

The following table lists the available rfmodel object constructors and describes the
model the corresponding objects use. For more information on a particular object, follow
the link in the table to the reference page for that object.

Constructor Description
rfmodel . rational Rational function model
Model Object Methods

The following table lists the methods of the model objects, the types of objects on which
each can act, and the purpose of each method.

Method Types of Objects Purpose
freqgresp All model objects Compute the frequency response of a model
object.

2-9

2 rr Objects

2-10

Method Types of Obijects Purpose

timeresp All model objects Compute the time response of a model
object.

writeva All model objects Write data from a model object to a file.

RF Network Parameter Objects

RF Network Parameter Objects

In this section...

“Overview of Network Parameter Objects” on page 2-11

“Available Network Parameter Objects” on page 2-11

“Network Parameter Object Functions” on page 2-11

Overview of Network Parameter Objects
RF Toolbox software offers network parameter objects for:

+ Importing network parameter data from a Touchstone file.
+ Converting network parameters.
* Analyzing network parameter data.

Unlike circuit, model, and data objects, you can use existing RF Toolbox functions to
operate directly on network parameter objects.

Available Network Parameter Obijects

The following table lists the available network parameter objects and the functions that
are used to construct them. For more information on a particular object, follow the link in
the table to the reference page for that functions.

Network Parameter Object Type Network Parameter Object Function
ABCD Parameter object abcdparameters

Hybrid-g parameter object gparameters

Hybrid parameter object hparameters

S-parameter object sparameters

Y-parameter object yparameters

Z-parameter object zparameters

Network Parameter Object Functions

The following table lists the functions that accept network parameter objects as inputs,
the types of objects on which each can act, and the purpose of each function.

2-11

2 rr Objects

Function Types of Objects Purpose
abcdparameters All network parameter Convert any network
objects parameters to ABCD
parameters
gparameters All network parameter Convert any network
objects parameters to hybrid-g
parameters
hparameters All network parameter Convert any network
objects parameters to hybrid
parameters
sparameters All network parameter Convert any network
objects parameters to S-parameters
yparameters All network parameter Convert any network
objects parameters to Y-parameters
zparameters All network parameter Convert any network
objects parameters to Z-parameters
cascadesparams S-parameter objects Cascade S-parameters
deembedsparams S-parameter objects De-embed S-parameters
gammain S-parameter objects Calculate input reflection
coefficient
gammaml S-parameter objects Calculate load reflection
coefficient
gammams S-parameter objects Calculate source reflection
coefficient
gammaout S-parameter objects Calculate output reflection
coefficient
ispassive S-parameter objects Check S-parameter data
passivity
makepassive S-parameter objects Make S-parameter data
passive
newref S-parameter objects Change reference impedance
powergain S-parameter objects Calculate power gain
rfplot S-parameter objects Plot network parameters

2-12

RF Network Parameter Objects

Function Types of Objects Purpose
rfinterpl All network parameter Interpolate network
objects parameters at new
frequencies
rfparam All network parameter Extract vector of network
objects parameters
s2tf S-parameter objects Create transfer function

from S-parameters

stabilityk

S-parameter objects

Calculate stability factor K of
2-port network

stabilitymu

S-parameter objects

Calculate stability factor p of
2-port network

smith

All network parameter
objects

Plot network parameter data
on a Smith Chart

2-13

Model an RF Component

* “Create RF Objects” on page 3-2

+ “Specify or Import Component Data” on page 3-5
+ “Specify Operating Conditions” on page 3-16

* “Process File Data for Analysis” on page 3-18

* “Analyze and Plot RF Components” on page 3-23
+ “Export Component Data to a File” on page 3-35
+ “Basic Operations with RF Objects” on page 3-38

3 Model an RF Component
P

Create RF Objects

In this section...

“Construct a New Object” on page 3-2
“Copy an Existing Object” on page 3-3

Construct a New Obiject

You can create any rfdata, rfckt or rfmodel object by calling the object constructor.
You can create an rfmodel object by fitting a rational function to passive component
data.

This section contains the following topics:

+ “Call the Object Constructor” on page 3-2

+ “Fit a Rational Function to Passive Component Data” on page 3-3

Call the Object Constructor

To create a new RF object with default property values, you call the object constructor
without any arguments:

h = objecttype.objectname
where:

* his the handle to the new object.
* objecttype is the object type (rfdata, rfckt, or rfmodel).
* objectname is the object name.

For example, to create an RLCG transmission line object, type:
h = rfckt.rlcgline
because the RLCG transmission line object is a circuit (rfckt) object named ricgline.

The following code illustrates how to call the object constructor to create a microstrip
transmission line object with default property values. The output t1 is the handle of the
newly created transmission line object.

tl = rfckt.microstrip

3-2

Create RF Objects

RF Toolbox software lists the properties of the transmission line you created along with
the associated default property values.

tl =
Name: "Microstrip Transmission Line”
nPort: 2
AnalyzedResult: []
LineLength: 0.0100
StubMode: “NotAStub-
Termination: "NotApplicable”
Width: 6.0000e-004
Height: 6.3500e-004
Thickness: 5.0000e-006
EpsilonR: 9.8000
SigmaCond: Inf
LossTangent: O

The rfckt.microstrip reference page describes these properties in detail.
Fit a Rational Function to Passive Component Data

You can create a model object by fitting a rational function to passive component data.
You use this approach to create a model object that represents one of the following using
a rational function:

* A circuit object that you created and analyzed.

+ Data that you imported from a file.

For more information, see “Fit a Model Object to Circuit Object Data” on page 3-32.

Copy an Existing Object

You can create a new object with the same property values as an existing object by using
the copy function to copy the existing object. This function is useful if you have an object
that is similar to one you want to create.

For example,
t2 = copy(tl);

creates a new object, t2, which has the same property values as the microstrip
transmission line object, t1.

3 Model an RF Component

You can later change specific property values for this copy. For information on modifying
object properties, see “Specify or Import Component Data” on page 3-5.

Note: The syntax t2 = tl copies only the object handle and does not create a new
object.

3-4

Specify or Import Component Data

Specify or Import Component Data

In this section...

“RF Object Properties” on page 3-5

“Set Property Values” on page 3-5

“Import Property Values from Data Files” on page 3-8

“Use Data Objects to Specify Circuit Properties” on page 3-10
“Retrieve Property Values” on page 3-13

“Reference Properties Directly Using Dot Notation” on page 3-14

RF Object Properties

Object properties specify the behavior of an object. You can specify object properties, or
you can import them from a data file. To learn about properties that are specific to a
particular type of circuit, data, or model object, see the reference page for that type of
object.

Note: The “RF Circuit Objects” on page 2-4, “RF Data Objects” on page 2-2,“RF Model
Objects” on page 2-9 sections list the available types of objects and provide links to their
reference pages.

Set Property Values

You can specify object property values when you construct an object or you can modify
the property values of an existing object.

This section contains the following topics:

* “Specify Property Values at Construction” on page 3-5
* “Change Property Values of an Existing Object” on page 3-7

Specify Property Values at Construction

To set a property when you construct an object, include a comma-separated list of one
or more property/value pairs in the argument list of the object construction command.

3-5

3 Model an RF Component
P

A property/value pair consists of the arguments "PropertyName* ,PropertyValue,
where:

* PropertyName is a character vector specifying the property name. The name is case-
insensitive. In addition, you need only type enough letters to uniquely identify the
property name. For example, "st" is sufficient to refer to the StubMode property.

Note: You must use single quotation marks around the property name.

* PropertyValue is the value to assign to the property.

Include as many property names in the argument list as there are properties you want
to set. Any property values that you do not set retain their default values. The circuit
and data object reference pages list the valid values as well as the default value for each
property.

This section contains examples of how to perform the following tasks:

+ “Construct Components with Specified Properties” on page 3-6

* “Construct Networks of Specified Components” on page 3-7
Construct Components with Specified Properties

The following code creates a coaxial transmission line circuit object to represent a coaxial
transmission line that is 0.05 meters long. Notice that the toolbox lists the available
properties and their values.

tl = rfckt.coaxial("LineLength®,0.05)
tl =

Name: "Coaxial Transmission Line*
nPort: 2
AnalyzedResult: []
LineLength: 0.0500
StubMode: "NotAStub®
Termination: "NotApplicable*
OuterRadius: 0.0026
InnerRadius: 7.2500e-004
MuR: 1
EpsilonR: 2.3000
LossTangent: O
SigmaCond: Inf

Specify or Import Component Data

Construct Networks of Specified Components

To combine a set of RF components and existing networks to form an RF network, you
create a network object with the Ckts property set to an array containing the handles of
all the circuit objects in the network.

Suppose you have the following RF components:

tl = rfckt.coaxial("LineLength®,0.05);
al = rfckt_amplifier;
t2 = rfckt.coaxial("LineLength®,0.1);

The following code creates a cascaded network of these components:

casc_network = rfckt.cascade("Ckts",{tl,al,t2});
Change Property Values of an Existing Object

There are two ways to change the properties of an existing object:

+ Using the set command

+ Using structure-like assignments called dot notation

This section discusses the first option. For details on the second option, see “Reference
Properties Directly Using Dot Notation” on page 3-14.

To modify the properties of an existing object, use the set command with one or more
property/value pairs in the argument list. The general syntax of the command is

set(h,Property1®,valuel,"Property2*,value2,...)
where

* his the handle of the object.
* "Property1*,valuel,"Property2®,value2, ... is the list of property/value
pairs.

For example, the following code creates a default coaxial transmission line object and
changes it to a series stub with open termination.

tl = rfckt.coaxial;
set(tl, "StubMode* , "series”, "Termination”, "open®)

3 Model an RF Component
P

3-8

Note: You can use the set command without specifying any property/value pairs to
display a list of all properties you can set for a specific object. This example lists the
properties you can set for the coaxial transmission line t1:

set(tl)

ans =
LineLength: {}
StubMode: {}
Termination: {}
OuterRadius: {}
InnerRadius: {}
MuR: {}
EpsilonR: {}
LossTangent: {}
SigmaCond: {}

Import Property Values from Data Files

RF Toolbox software lets you import industry-standard data files, MathWorks AMP
files, and Agilent P2D and S2D files into specific objects. This import capability lets you
simulate the behavior of measured components.

You can import the following file formats:

+ Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP
formats specify the network parameters and noise information for measured and
simulated data.

For more information on Touchstone files, see https://ibis.org/connector/
touchstone_specll.pdf.

+ Agilent P2D file format — Specifies amplifier and mixer large-signal, power-
dependent network parameters, noise data, and intermodulation tables for several
operating conditions, such as temperature and bias values.

The P2D file format lets you import system-level verification models of amplifiers and
mixers.

+ Agilent S2D file format — Specifies amplifier and mixer network parameters with
gain compression, power-dependent S,; parameters, noise data, and intermodulation
tables for several operating conditions.

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

Specify or Import Component Data

The S2D file format lets you import system-level verification models of amplifiers and
mixers.

+ MathWorks amplifier (AMP) file format — Specifies amplifier network parameters,
output power versus input power, noise data and third-order intercept point.

For more information about .amp files, see “AMP File Data Sections” on page
9-2.

This section contains the following topics:

* “Objects Used to Import Data from a File” on page 3-9
+ “How to Import Data Files” on page 3-9

Objects Used to Import Data from a File

One data object and three circuit objects accept data from a file. The following table lists
the objects and any corresponding data format each supports.

Object Description Supported Format(s)

rfdata.data Data object containing Touchstone, AMP, P2D, S2D
network parameter data,
noise figure, and third-order
Intercept point

rfckt_amplifier Amplifier Touchstone, AMP, P2D, S2D
rfckt.mixer Mixer Touchstone, AMP, P2D, S2D
rfckt.passive Generic passive component |Touchstone

How to Import Data Files

To import file data into a circuit or data object at construction, use a read command of
the form:

obj = read(obj_type,"filename™);
where

+ obj is the handle of the circuit or data object.

3-9

3 Model an RF Component
P

3-10

+ 0bj type is the type of object in which to store the data, from the list of objects that
accept file data shown in “Objects Used to Import Data from a File” on page 3-9.

+ filename is the name of the file that contains the data.
For example,

ckt_obj=read(rfckt.amplifier, “default.amp®);
imports data from the file default.amp into an rfckt.amplifier object.

You can also import file data into an existing circuit object. The following commands are
equivalent to the previous command:

ckt_obj=rfckt.amplifier;
read(ckt_obj, “"default.amp®);

Note: When you import component data from a .p2d or .s2d file, properties are defined
for several operating conditions. You must select an operating condition to specify the
object behavior, as described in “Specify Operating Conditions” on page 3-16.

Use Data Objects to Specify Circuit Properties

To specify a circuit object property using a data object, use the set command with the
name of the data object as the value in the property/value pair.

For example, suppose you have the following rfckt.amplifier and rfdata.nf objects:
amp = rfckt.amplifier

f = 2.0e9;

nf = 13.3244;

nfdata = rfdata.nf("Freq”,f, "Data”,nf)

The following command uses the rfdata.nf data object to specify the
rfckt.amplifier NoiseData property:

set(amp, "NoiseData" ,nfdata)
Set Circuit Object Properties Using Data Objects

In this example, you create a circuit object. Then, you create three data objects and use
them to update the properties of the circuit object.

Specify or Import Component Data

Create an amplifier object. This circuit object, rfckt.amplifier, has a network
parameter, noise data, and nonlinear data properties. These properties control

the frequency response of the amplifier, which is stored in the AnalyzedResult
property. By default, all amplifier properties contain values from the default.amp
file. The NetworkData property is an rfdata.network object that contains 50-
ohm S-parameters. The NoiseData property is an rfdata.noise object that
contains frequency-dependent spot noise data. The NonlinearData property is an
rfdata.power object that contains output power and phase information.

amp = rfckt.amplifier
The toolbox displays the following output:
amp =

Name: “Amplifier”
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
IntpType: "Linear”
NetworkData: [1x1 rfdata.network]
NoiseData: [1x1 rfdata.noise]
NonlinearData: [1x1 rfdata.power]

Create a data object that stores network data. Type the following set of
commands at the MATLAB prompt to create an rfdata.network object that
stores the 2-port Y-parameters at 2.08 GHz, 2.10 GHz, and 2.15 GHz. Later in
this example, you use this data object to update the NetworkData property of the
rfckt.amplifier object.

f = [2.08 2.10 2.15]*1.0e9;
y(:,:,1) = [-.0090-.0104i, .0013+.0018i;
-.2947+.2961i, .0252+.0075i];

y(:.:,2) = [-.0086-.0047i, .0014+.0019i;
-.3047+.3083i, .0251+.0086i];
y(:.:,3) = [-.0051+.0130i, .0017+.0020i;

-.3335+.3861i, .0282+.0110i];

netdata = rfdata.network("Type®,"Y_PARAMETERS", ...
"Freq”,f, "Data”,y)

The toolbox displays the following output:

netdata =

3-11

3 Model an RF Component
P

3-12

Name: "Network parameters*®
Type: "Y_PARAMETERS*®
Freq: [3x1 double]
Data: [2x2x3 double]
Z0: 50

Create a data object that stores noise figure values. Type the following set of
commands at the MATLAB prompt to create a rfdata.nf object that contains noise
figure values, in dB, at seven different frequencies. Later in this example, you use
this data object to update the NoiseData property of the rfckt.ampliFfier object.

f =11.93 2.06 2.08 2.10 2.15 2.30 2.40]*1.0e9;
nf=[12.4521 13.2466 13.6853 14.0612 13.4111 12.9499 13.3244];

nfdata = rfdata.nf("Freq",f, "Data”,nf)

The toolbox displays the following output:
nfdata =

Name: "Noise figure®
Freq: [7x1 double]
Data: [7x1 double]

Create a data object that stores output third-order intercept points. Type
the following command at the MATLAB prompt to create a rfdata. ip3 object that
contains an output third-order intercept point of 8.45 watts, at 2.1 GHz. Later in
this example, you use this data object to update the Nonl inearData property of the
rfckt.amplifier object.

ip3data = rfdata.ip3("Type", "0IP3","Freq”,2.1e9, "Data”,8.45)
The toolbox displays the following output:
ip3data =

Name: *3rd order intercept”
Type: "OIP3*

Freq: 2.1000e+009

Data: 8.4500

Update the properties of the amplifier object. Type the following set of
commands at the MATLAB prompt to update the NetworkData, NoiseData, and
Nonl inearData properties of the amplifier object with the data objects you created
in the previous steps:

Specify or Import Component Data

amp.NetworkData = netdata;
amp._NoiseData = nfdata;
amp._NonlinearData = ip3data;

Retrieve Property Values

You can retrieve one or more property values of an existing object using the get
command.

This section contains the following topics:

+ “Retrieve Specified Property Values” on page 3-13
* “Retrieve All Property Values” on page 3-14

Retrieve Specified Property Values

To retrieve specific property values for an object, use the get command with the
following syntax:

PropertyValue = get(h,PropertyName)
where

* PropertyValue is the value assigned to the property.
* his the handle of the object.
* PropertyName is a character vector specifying the property name.

For example, suppose you have the following coaxial transmission line:

h2 = rfckt.coaxial;

The following code retrieves the value of the inner radius and outer radius for the coaxial
transmission line:

ir = get(h2, "InnerRadius”)
or = get(h2,"OuterRadius”®)
ir =

7.2500e-004
or =

3-13

3 Model an RF Component
P

0.0026

Retrieve All Property Values

To display a list of properties associated with a specific object as well as their current
values, use the get command without specifying a property name.

For example:

get(h2)
Name: "Coaxial Transmission Line*
nPort: 2
AnalyzedResult: []
LineLength: 0.0100
StubMode: "NotAStub®
Termination: "NotApplicable*
OuterRadius: 0.0026
InnerRadius: 7.2500e-004
MuR: 1
EpsilonR: 2.3000
LossTangent: O
SigmaCond: Inf

Note: This list includes read-only properties that do not appear when you type set(h2).
For a coaxial transmission line object, the read-only properties are Name, nPort,

and AnalyzedResult. The Name and nPort properties are fixed by the toolbox. The
AnalyzedResult property value is calculated and set by the toolbox when you analyze
the component at specified frequencies.

Reference Properties Directly Using Dot Notation

An alternative way to query for or modify property values is by structure-like
referencing. The field names for RF objects are the property names, so you can retrieve or
modify property values with the structure-like syntax.

* PropertyValue = rfobj.PropertyName stores the value of the PropertyName
property of the rfobj object in the PropertyValue variable. This command is
equivalent to PropertyValue = get(rfobj, "PropertyName*®).

* rfobj.PropertyName = PropertyValue sets the value of the PropertyName
property to PropertyValue for the rfobj object. This command is equivalent to
set(rfobj, "PropertyName® ,PropertyValue).

3-14

Specify or Import Component Data

For example, typing

ckt = rfckt.amplifier("IntpType”, "cubic”);
ckt. IntpType

gives the value of the property IntpType for the circuit object ckt.

ans =
Cubic

Similarly,
ckt.IntpType = "linear”;
resets the interpolation method to linear.

You do not need to type the entire field name or use uppercase characters. You only
need to type the minimum number of characters sufficient to identify the property name
uniquely. Thus entering the commands

rfckt_amplifier("IntpType”, "cubic®);

also produces

ans =
Cubic

3-15

3 Model an RF Component
P

Specify Operating Conditions

In this section...

“Available Operating Conditions” on page 3-16
“Set Operating Conditions” on page 3-16

“Display Available Operating Condition Values” on page 3-17

Available Operating Conditions

Agilent P2D and S2D files contain simulation results at one or more operating
conditions. Operating conditions define the independent parameter settings that are used
when creating the file data. The specified conditions differ from file to file.

When you import component data from a . p2d or .s2d file, the object contains property
values for several operating conditions. The available conditions depend on the data in
the file. By default, RF Toolbox software defines the object behavior using the property
values that correspond to the operating conditions that appear first in the file. To use
other property values, you must select a different operating condition.

Set Operating Conditions

To set the operating conditions of a circuit or data object, use a setop command of the
form:

setop(, 'Conditiont',valuet,..., 'ConditionN',valueN,...)
where

* 1is the handle of the circuit or data object.

+ Conditiont,valuet,...,ConditionN,valueN are the condition/value pairs that
specify the operating condition.

For example,
setop(myp2d, "BiasL", 2, "BiasU", 6.3)

specifies an operating condition of BiasL = 2 and BiasU = 6.3 for myp2d.

3-16

Specify Operating Conditions

Display Available Operating Condition Values

To display a list of available operating condition values for a circuit or data object, use
the setop method.

setop(obj)
displays the available values for all operating conditions of the object obj.
setop(obj,"Conditiont™)

displays the available values for ConditionT.

3-17

3 Model an RF Component
P

Process File Data for Analysis

3-18

In this section...

“Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters” on page 3-18
“Extract M-Port S-Parameters from N-Port S-Parameters” on page 3-19
“Cascade N-Port S-Parameters” on page 3-21

Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters

After you import file data (as described in “Import Property Values from Data Files”
on page 3-8), you can convert a matrix of single-ended S-parameter data to a matrix of
mixed-mode S-parameters.

This section contains the following topics:

“Functions for Converting S-Parameters” on page 3-18

“Convert S-Parameters” on page 3-19

Functions for Converting S-Parameters

To convert between 4-port single-ended S-parameter data and 2-port differential-,
common-, and cross-mode S-parameters, use one of these functions:

s2scc — Convert 4-port, single-ended S-parameters to 2-port, common-mode S-
parameters (Sg.).

s2scd — Convert 4-port, single-ended S-parameters to 2-port, cross-mode S-
parameters (S.q).

s2sdc — Convert 4-port, single-ended S-parameters to cross-mode S-parameters (Sqc).

s2sdd — Convert 4-port, single-ended S-parameters to 2-port, differential-mode S-
parameters (Sqq).

To perform the above conversions all at once, or to convert larger data sets, use one of
these functions:

s2smm — Convert 4N-port, single-ended S-parameters to 2N-port, mixed-mode S-
parameters.

Process File Data for Analysis

+ smm2s — Convert 2N-port, mixed-mode S-parameters to 4N-port, single-ended S-
parameters.

Conversion functions support a variety of port orderings. For more information on these
functions, see the corresponding reference pages.

Convert S-Parameters

In this example, use the toolbox to import 4-port single-ended S-parameter data from a
file, convert the data to 2-port differential S-parameter data, and create a new rfckt
object to store the converted data for analysis.

At the MATLAB prompt:
1 Type this command to import data from the file default.s4p:

SingleEnded4Port = read(rfdata.data, "default.s4p®);

2 Type this command to convert 4-port single-ended S-parameters to 2-port mixed-
mode S-parameters:

DifferentialSParams = s2sdd(SingleEnded4Port.S_Parameters);

Note: The S-parameters that you specify as input to the s2sdd function are the ones
the toolbox stores in the S_Parameters property of the rfdata.data object.

3 Type this command to create an rfckt.passive object that stores the 2-port
differential S-parameters for simulation:

DifferentialCkt = rfckt.passive("NetworkData",

rfdata.network("Data”, DifferentialSParams, "Freq”,
SingleEnded4PortData.Freq));

Extract M-Port S-Parameters from N-Port S-Parameters
After you import file data (as described in “Import Property Values from Data Files” on
page 3-8), you can extract a set of data with a smaller number of ports by terminating

one or more ports with a specified impedance.

This section contains the following topics:

+ “Extract S-Parameters” on page 3-20

3-19

3 Model an RF Component
P

3-20

+ “Extract S-Parameters From Imported File Data” on page 3-21
Extract S-Parameters

To extract M-port S-parameters from N-port S-parameters, use the snp2smp function
with the following syntax:

S_params_mp = snp2smp(s_params_np, z0, n2m_index, zt)
where

* S _params_np is an array of N-port S-parameters with a reference impedance z0.
* s_params_mp is an array of M-port S-parameters.

* n2m_index is a vector of length M specifying how the ports of the N-port S-
parameters map to the ports of the M-port S-parameters. n2m_index (1) is the index
of the port from s_params_np that is converted to the ith port of s_params_mp.

+ Zt is the termination impedance of the ports.

The following figure illustrates how to specify the ports for the output data and the
termination of the remaining ports.

ZT{1h 1] NPort [N bz
zT{2}f 2| N-1
[k bz
i]

For more details about the arguments to this function, see the snp2smp reference page.

Process File Data for Analysis

Extract S-Parameters From Imported File Data

In this example, use the toolbox to import 16-port S-parameter data from a file, convert
the data to 4-port S-parameter data by terminating the remaining ports, and create a
new rfckt object to store the extracted data for analysis.

At the MATLAB prompt:

1 Type this command to import data from the file default.s16p into an
rfdata.data object, SingleEndedl16PortData:

SingleEndedl6PortData = read(rfdata.data, "default.sl1l6p”);

2 Type this command to convert 16-port S-parameters to 4-port S-parameters by using
ports 1, 16, 2, and 15 as the first, second, third, and fourth ports, and terminating
the remaining 12 ports with an impedance of 50 ohms:

N2M_index = [1 16 2 15];

FourPortSParams = snp2smp(SingleEndedl6PortData.S_Parameters, ...
SingleEndedl6PortData.Z0, N2M_index, 50);

Note: The S-parameters that you specify as input to the snp2smp function are the
ones the toolbox stores in the S_Parameters property of the rfdata.data object.

3 Type this command to create an rfckt.passive object that stores the 4-port S-
parameters for simulation:

FourPortChannel = rfckt.passive("NetworkData",

rfdata.network("Data”, FourPortSParams, "Freq-,
SingleEndedl6PortData.Freq));

Cascade N-Port S-Parameters

After you import file data (as described in “Import Property Values from Data Files” on
page 3-8), you can cascade two or more networks of N-port S-parameters.

To cascade networks of N-port S-parameters, use the cascadesparams function with the
following syntax:

s_params = cascadesparams(s1_params,s2_params,..., sn_params ,nconn)
where

* s_params is an array of cascaded S-parameters.

3-21

3 Model an RF Component
P

3-22

s1_params,s2_params, ...,Sn_params are arrays of input S-parameters.

nconn is a positive scalar or a vector of size n-1 specifying how many connections to
make between the ports of the input S-parameters. cascadesparams connects the
last port(s) of one network to the first port(s) of the next network.

For more details about the arguments to this function, see the cascadesparams
reference page.

Import and Cascade N-Port S-Parameters

In this example, use the toolbox to import 16-port and 4-port S-parameter file data and
cascade the two S-parameter networks by connecting the last three ports of the 16-port
network to the first three ports of the 4-port network. Then, create a new rfckt object to
store the resulting network for analysis.

At the MATLAB prompt:

1

Type these commands to import data from the files default.s16p and
default.s4p, and create the 16- and 4-port networks of S-parameters:

S_16Port = read(rfdata.data, "default.s16p”);
S_4Port = read(rfdata.data, "default.s4p*);
freq = [2e9 2.1e9];

analyze(S_16Port, freq);

analyze(S_4Port, freq);

sSparams_16p = S_16Port.S_Parameters;
sparams_4p = S_4Port.S_Parameters;

Type this command to cascade 16-port S-parameters and 4-port S-parameters by

connecting ports 14, 15, and 16 of the 16-port network to ports 1, 2, and 3 of the 4-
port network:

sparams_cascaded = cascadesparams(sparams_16p, sparams_4p,3)
cascadesparams creates a 14-port network. Ports 1-13 are the first 13 ports of the
16-port network. Port 14 is the fourth port of the 4-port network.

Type this command to create an rfckt.passive object that stores the 14-port S-
parameters for simulation:

Cktl4 = rfckt.passive("NetworkData",
rfdata.network("Data”, sparams_cascaded, "Freq-”,

freq));

For more examples of how to use this function, see the cascadesparams reference page.

Analyze and Plot RF Components

Analyze and Plot RF Components

In this section...

“Analyze Networks in the Frequency Domain” on page 3-23
“Visualize Component and Network Data” on page 3-23

“Compute and Plot Time-Domain Specifications” on page 3-32

Analyze Networks in the Frequency Domain

RF Toolbox software lets you analyze RF components and networks in the frequency
domain. You use the analyze method to analyze a circuit object over a specified set of
frequencies.

For example, to analyze a coaxial transmission line from 1 GHz to 2.9 GHz in increments
of 10 MHz:

ckt = rfckt.coaxial;
f = [1.0e9:1e7:2.9e9];
analyze(ckt,f);

Note: For all circuits objects except those that contain data from a file, you must perform
a frequency-domain analysis with the analyze method before visualizing component and
network data. For circuits that contain data from a file, the toolbox performs a frequency-
domain analysis when you use the read method to import the data.

When you analyze a circuit object, the toolbox computes the circuit network parameters,
noise figure values, and output third-order intercept point (OIP3) values at the specified
frequencies and stores the result of the analysis in the object's AnalyzedResult
property.

For more information, see the analyze reference page or the circuit object reference
page.

Visualize Component and Network Data

The toolbox lets you validate the behavior of circuit objects that represent RF
components and networks by plotting the following data:

3-23

3 Model an RF Component
P

3-24

* Large- and small-signal S-parameters

+ Noise figure

* Output third-order intercept point

* Power data

* Phase noise

* Voltage standing-wave ratio

* Power gain

* Group delay

* Reflection coefficients

+ Stability data

* Transfer function

The following table summarizes the available plots and charts, along with the methods
you can use to create each one and a description of its contents.

Plot Type

Methods

Plot Contents

Rectangular Plot

plot
plotyy
loglog
semi logx

semi logy

Parameters as a function of
frequency or, where applicable,
operating condition. The available
parameters include:

+ S-parameters

* Noise figure

+ Voltage standing-wave ratio

(VSWR)
- OIP3

Budget Plot (3-D)

plot

Parameters as a function of
frequency for each component in

a cascade, where the curve for a
given component represents the
cumulative contribution of each RF
component up to and including the
parameter value of that component.

Mixer Spur Plot

plot

Mixer spur power as a function of
frequency for an rfckt.mixer

Analyze and Plot RF Components

Plot Type Methods Plot Contents
object or an rfckt.cascade object
that contains a mixer.

Polar Plot polar Magnitude and phase of S-
parameters as a function of
frequency.

Smith Chart smith Real and imaginary parts of

S-parameters as a function of
frequency, used for analyzing the
reflections caused by impedance
mismatch.

For each plot you create, you choose a parameter to plot and, optionally, a format in
which to plot that parameter. The plot format defines how the toolbox displays the data
on the plot. The available formats vary with the data you select to plot. The data you can
plot depends on the type of plot you create.

Note: You can use the listparam method to list the parameters of a specified circuit
object that are available for plotting. You can use the listformat method to list the
available formats for a specified circuit object parameter.

The following topics describe the available plots:

+ “Rectangular” on page 3-25

+ “Budget” on page 3-26

+ “Mixer Spur” on page 3-28

* “Polar Plots and Smith Charts” on page 3-31

Rectangular

You can plot any parameters that are relevant to your object on a rectangular plot.

You can plot parameters as a function of frequency for any object. When you import
object data from a .p2d or .s2d file, you can also plot parameters as a function of any
operating condition from the file that has numeric values, such as bias. In addition,
when you import object data from a .p2d file, you can plot large-signal S-parameters as
a function of input power or as a function of frequency. These parameters are denoted
LS11, LS12,LS21, and LS22.

3-25

3 Model an RF Component
P

3-26

The following table summarizes the methods that are available in the toolbox for
creating rectangular plots and describes the uses of each one. For more information on a
particular type of plot, follow the link in the table to the documentation for that method.

Method Description

plot Plot of one or more object parameters

plotyy Plot of one or more object parameters with y-axes on both
the left and right sides

semi logx Plot of one or more object parameters using a log scale for
the X-axis

semi logy Plot of one or more object parameters using a log scale for
the Y-axis

loglog Plot of one or more object parameters using a log-log scale

Budget

You use the link budget plot to understand the individual contribution of each component
to a plotted parameter value in a cascaded network with multiple components.

The budget plot is a three-dimensional plot that shows one or more curves of parameter
values as a function of frequency, ordered by the circuit index of the cascaded network.

Consider the following cascaded network:

casc = rfckt._.cascade("Ckts", ...
{rfckt.amplifier,rfckt.Icbandpasspi,rfckt.txline})

The following figure shows how the circuit index is assigned to each component in the

cascade, based on its sequential position in the network.

rfckt.amplifier rfckt.lcbandpasspi rfckt.txline
object object object
(Index = 1) (Index = 2) (Index = 3)

You create a budget plot for this cascade using the plot method with the second
argument set to "budget”, as shown in the following command:

Analyze and Plot RF Components

plot(casc, "budget”, "s21%)

A curve on the link budget plot for each circuit index represents the contributions to the
parameter value of the RF components up to that index. The following figure shows the

budget plot.

g =R
File Edit View Insert Tools Desktop Window Help N
DeE& K aadms € 0E 8O
a0 -
o)
QO
=
@ 0
=
Q
el
=
S 500
(3]
=
™~
100
1
1 ..
Freq [GHz] Index of the circuit
Contributions to S21 Contributions to S21 Contributions to S21
from component 1 from components from components
1and 2 1,2,and 3
Budget Plot

3-27

3 Model an RF Component
P

3-28

If you specify two or more parameters, the toolbox puts the parameters in a single plot.
You can only specify a single format for all the parameters.

Mixer Spur

You use the mixer spur plot to understand how mixer nonlinearities affect output power
at the desired mixer output frequency and at the intermodulation products that occur at
the following frequencies:

ﬁ)ut :N*ﬁn"_M*fLO

where
* [, is the input frequency.

fLo is the local oscillator frequency.

* N and M are integers.

The toolbox calculates the output power from the mixer intermodulation table (IMT).
These tables are described in detail in the Visualizing Mixer Spurs example.

The mixer spur plot shows power as a function of frequency for an rfckt.mixer
object or an rfckt.cascade object that contains a mixer. By default, the plot is three-
dimensional and shows a stem plot of power as a function of frequency, ordered by the
circuit index of the object. You can create a two-dimensional stem plot of power as a
function of frequency for a single circuit index by specifying the index in the mixer spur
plot command.

Consider the following cascaded network:

FirstCkt = rfckt_amplifier("NetworkData",
rfdata.network("Type®, "S", "Freq", 2.1e9,
"Data”, [0,0;10,0]), “NoiseData", 0, "NonlinearData®", inf);
SecondCkt = read(rfckt.mixer, "samplespurl.s2d®);
ThirdCkt = rfckt.lcbandpasstee("L", [97.21 3.66 97.21]*1e-9,
"C", [1.63 43.25 1.63]*1.0e-12);
CascadedCkt = rfckt.cascade("Ckts",
{FirstCkt, SecondCkt, ThirdCkt});
The following figure shows how the circuit index is assigned to the components in the
cascade, based on its sequential position in the network.

Analyze and Plot RF Components

I

I

I
|

| LNA

Mixer

Circuit Index 0

+ Circuit index 0 corresponds to the cascade input.

Circuit Index 1

Circuit Index 2

+ Circuit index 1 corresponds to the LNA output.

+ Circuit index 2 corresponds to the mixer output.

+ Circuit index 3 corresponds to the filter output.

Filter

I

I

I
|

|

Circuit Index 3

You create a spur plot for this cascade using the plot method with the second argument

set to "mixerspur”, as shown in the following command:

plot(CascadedCkt, "mixerspur™)

Within the three dimensional plot, the stem plot for each circuit index represents the
power at that circuit index. The following figure shows the mixer spur plot.

3-29

3 Model an RF Component

File Edit View Insert Tools Deskkop | Window Help

=10l x|

DEE&ES K RAOS|[E| 0B

Power [dBm]

Freq [GHz] Index of the circuit
Input power Output power Output power Output power
of component 1 of component 1 of component 2 of component 3
Mixer Spur Plot

For more information on mixer spur plots, see the plot reference page.

3-30

Analyze and Plot RF Components

Polar Plots and Smith Charts

You can use the toolbox to generate Polar plots and Smith Charts. If you specify two or
more parameters, the toolbox puts the parameters in a single plot.

The following table describes the Polar plot and Smith Chartt options, as well as the
available parameters.

Note: LS11, LS12, LS21, and LS22 are large-signal S-parameters. You can plot these
parameters as a function of input power or as a function of frequency.

Plot Type Method Parameter
Polar plane polar S11, S12, S21, S22

LS11, LS12,L.S21, LS22
(Objects with data from a

P2D file only)
Z Smith chart smith with type argument |S11, S22
setto "z"
LS11, LS22 (Objects with
data from a P2D file only)
Y Smith chart smith with type argument |S11, S22
setto "y"
LS11, LS22 (Objects with
data from a P2D file only)
ZY Smith chart smith with type argument [S11, S22
set to "zy"

LS11, LS22 (Objects with
data from a P2D file only)

By default, the toolbox plots the parameter as a function of frequency. When you import
block data from a .p2d or .s2d file, you can also plot parameters as a function of any
operating condition from the file that has numeric values, such as bias.

Note: The circle method lets you place circles on a Smith Chart to depict stability
regions and display constant gain, noise figure, reflection and immittance circles. For

3-31

3 Model an RF Component
P

3-32

more information about this method, see the circle reference page or the two-part RF
Toolbox example about designing matching networks.

For more information on a particular type of plot, follow the link in the table to the
documentation for that method.

Compute and Plot Time-Domain Specifications
The toolbox lets you compute and plot time-domain characteristics for RF components.

This section contains the following topics:

+ “Compute the Network Transfer Function” on page 3-32
* “Fit a Model Object to Circuit Object Data” on page 3-32
+ “Compute and Plotting the Time-Domain Response” on page 3-33

Compute the Network Transfer Function

You use the s2tf function to convert 2-port S-parameters to a transfer function. The
function returns a vector of transfer function values that represent the normalized
voltage gain of a 2-port network.

The following code illustrates how to read file data into a passive circuit object, extract
the 2-port S-parameters from the object and compute the transfer function of the data
at the frequencies for which the data is specified. z0 is the reference impedance of the
S-parameters, zs is the source impedance, and z1 is the load impedance. See the s2tf
reference page for more information on how these impedances are used to define the
gain.

PassiveCkt = rfckt.passive("File", "passive.s2p”)

z0=50; zs=50; zI=50;

[SParams, Freq] = extract(PassiveCkt, "S Parameters®, z0);
TransFunc = s2tf(SParams, z0, zs, zl);

Fit a Model Object to Circuit Object Data

You use the rational fit function to fit a rational function to the transfer function
of a passive component. The rational it function returns an rfmodel object that
represents the transfer function analytically.

Analyze and Plot RF Components

The following code illustrates how to use the rational fit function to create an
rfmodel . rational object that contains a rational function model of the transfer
function that you created in the previous example.

RationalFunc = rationalfit(Freq, TransFunc)

To find out how many poles the toolbox used to represent the data, look at the length of
the A vector of the Rational Func model object.

nPoles = length(RationalFunc.A)

Note: The number of poles is important if you plan to use the RF model object to create
a model for use in another simulator, because a large number of poles can increase
simulation time. For information on how to represent a component accurately using a
minimum number of poles, see “Represent a Circuit Object with a Model Object” on page
4-4.

See the rational Fit reference page for more information.

Use the freqresp method to compute the frequency response of the fitted data. To
validate the model fit, plot the transfer function of the original data and the frequency
response of the fitted data.

Resp = fregresp(RationalFunc, Freq);
plot(Freq, 20*logl0(abs(TransFunc)), "r-,
Freq, 20*logl0(abs(Resp)), "b--7);
ylabel (*"Magnitude of H(s) (decibels)");
xlabel ("Frequency (Hz)");
legend("Original®™, "Fitting result®);
title(["Rational fitting with ", int2str(nPoles), " poles™]);

Compute and Plotting the Time-Domain Response

You use the timeresp method to compute the time-domain response of the transfer
function that RationalFunc represents.

The following code illustrates how to create a random input signal, compute the time-
domain response of RationalFunc to the input signal, and plot the results.

SampleTime=1le-11;

NumberOfSamples=4750;
OverSamplingFactor = 25;

3-33

3 Model an RF Component
P

InputTime = double((1:NumberOfSamples)")*SampleTime;

InputSignal = ...
sign(randn(l, ceil(NumberOfSamples/OverSamplingFactor)));

InputSignal = repmat(lnputSignal, [OverSamplingFactor, 1]);
InputSignal = InputSignal(:);

[tresp,t]=timeresp(RationalFunc, InputSignal,SampleTime);
plot(t*1e9,tresp);

title("Fitting Time-Domain Response®, "fonts®, 12);
ylabel ("Response to Random Input Signal®);

xlabel ("Time (ns)*);

For more information about computing the time response of a model object, see the
timeresp reference page.

3-34

Export Component Data to a File

Export Component Data to a File

In this section...

“Available Export Formats” on page 3-35
“How to Export Object Data” on page 3-35
“Export Object Data” on page 3-36

Available Export Formats

RF Toolbox software lets you export data from any rfckt object or from an
rfdata.data object to industry-standard data files and MathWorks AMP files. This
export capability lets you store data for use in other simulations.

Note: The toolbox also lets you export data from an rfmodel object to a Verilog-A file.
For information on how to do this, see “Export a Verilog-A Model” on page 4-4.

You can export data to the following file formats:

* Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP
formats specify the network parameters and noise information for measured and
simulated data.

For more information about Touchstone files, see https://ibis.org/connector/
touchstone_specl1.pdf.

+ MathWorks amplifier (AMP) file format — Specifies amplifier network parameters,
output power versus input power, noise data and third-order intercept point.

For more information about .amp files, see “AMP File Data Sections” on page
9-2.
How to Export Object Data
To export data from a circuit or data object, use a write command of the form
status = write(obj,"filename™);

where

3-35

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

3 Model an RF Component
P

3-36

+ status is a return value that indicates whether the write operation was successful.
* obj is the handle of the circuit or rfdata.data object.
+ filename is the name of the file that contains the data.

For example,
status = write(rfckt.amplifier, "myamp.amp®);

exports data from an rfckt.amplifier object to the file myamp.amp.

Export Object Data

In this example, use the toolbox to create a vector of S-parameter data, store it in an
rfdata.data object, and export it to a Touchstone file.

At the MATLAB prompt:

1 Type the following to create a vector, S_vec, of S-parameter values at three
frequency values:

s vec(:,:,1) = ...
[-0.724725-0.481324i, -0.685727+1.782660i ;
0.000000+0.0000001, -0.074122-0.321568i];
s vec(:,:,2) = ...
[-0.731774-0.471453i, -0.655990+1.798041i;
0.001399+0.0004631, -0.076091-0.319025i1];
s vec(:,:,3) = ...
[-0.738760-0.461585i, -0.626185+1.8130921i;
0.002733+0.0008871, -0.077999-0.316488i];
2 Type the following to create an rfdata.data object called txdata with the default
property values:

txdata = rfdata.data;

3 Type the following to set the S-parameter values of txdata to the values you
specified in S_vec:
txdata.S_Parameters = s_vec;

4 Type the following to set the frequency values of txdata to [1e9 2e9 3e9]:

txdata.Freq=1e9*[1 2 3];

5 Type the following to export the data in txdata to a Touchstone file called
test.s2p:

Export Component Data to a File

write(txdata, "test")

3-37

3 Model an RF Component
P

Basic Operations with RF Objects

In this section...

“Read and Analyze RF Data from a Touchstone Data File” on page 3-38
“De-Embed S-Parameters” on page 3-40

Read and Analyze RF Data from a Touchstone Data File

In this example, you create an rfdata.data object by reading the S-parameters of a 2-
port passive network stored in the Touchstone format data file, passive.s2p.

1 Read S-parameter data from a data file. Use the RF Toolbox read command
to read the Touchstone data file, passive .s2p. This file contains 50-ohm S-
parameters at frequencies ranging from 315 kHz to 6 GHz. The read command
creates an rfdata.data object, data, and stores data from the file in the object's
properties.

data = read(rfdata.data, "passive.s2p”);

2 Extract the network parameters from the data object. Use the extract
command to convert the 50-ohm S-parameters in the rfdata.data object, data,
to 75-ohm S-parameters and save them in the variable s_params. You also use the
command to extract the Y-parameters from the rfdata.data object and save them
in the variable y_params.

freq = data.Freq;
s_params = extract(data,"S_PARAMETERS",75);
y_params = extract(data, "Y_PARAMETERS");

3 Plot the S;; parameters. Use the smithchart command to plot the 75-ohm Sy,
parameters on a Smith Chart:

sll = s _params(1,1,:);
smithchart(s11(:));

3-38

Basic Operations with RF Objects

T =lolx|

File Edit Wwiew Insert Tools Desktop ‘Window Help

DeE& kAN € 08 00

+1.0

1.0

View the 75-ohm S-parameters and Y-parameters at 6 GHz. Type the following
set of commands at the MATLAB prompt to display the four 75-ohm S-parameter
values and the four Y-parameter values at 6 GHz.

T = freq(end)
s = s_params(:,:,end)
y = y_params(:,:,end)

The toolbox displays the following output:

f =
6.0000e+009

s =
-0.0764 - 0.5401i 0.6087 - 0.3018i
0.6094 - 0.3020i -0.1211 - 0.5223i

y =
0.0210 + 0.0252i -0.0215 - 0.0184i

3-39

3 Model an RF Component
P

3-40

-0.0215 - 0.0185i 0.0224 + 0.0266i

For more information, see the rfdata.data, read, and extract reference pages.

De-Embed S-Parameters

The Touchstone data file samplebjt2.s2p contains S-parameter data collected from a
bipolar transistor in a test fixture. The input of the fixture has a bond wire connected to a
bond pad. The output of the fixture has a bond pad connected to a bond wire.

The configuration of the bipolar transistor, which is the device under test (DUT), and the
fixture is shown in the following figure.

1nH 1nH
YN YL
100 fF —— DUT ——100fF

In this example, you remove the effects of the fixture and extract the S-parameters of the
DUT.

1 Create RF objects. Create a data object for the measured S-parameters by reading
the Touchstone data file samplebjt2.s2p. Then, create two more circuit objects,
one each for the input pad and output pad.

measured_data = read(rfdata.data, "samplebjt2.s2p*);

input_pad = rfckt.cascade("Ckts", ...
{rfckt.seriesrlc(°L",1le-9), .
rfckt.shuntrlc("C",100e-15)}); % L=1 nH, C=100 fF

output_pad = rfckt.cascade("Ckts",...
{rfckt.shuntrlc("C",100e-15), ...
rfckt.seriesrlc("L",1e-9)}); % L=1 nH, C=100 fF

2 Analyze the input pad and output pad circuit objects. Analyze the circuit
objects at the frequencies at which the S-parameters are measured.

freq = measured_data.Freq;

Basic Operations with RF Objects

analyze(input_pad, freq);
analyze(output_pad,freq);

De-embed the S-parameters. Extract the S-parameters of the DUT from the
measured S-parameters by removing the effects of the input and output pads.

z0 = measured_data.ZO;

input_pad_sparams = extract(input_pad.AnalyzedResult, ...
*S_Parameters®,z0);

output_pad_sparams = extract(output_pad.AnalyzedResult, ...
*S_Parameters®,z0);

de_embedded_sparams = ...
deembedsparams(measured_data.S_Parameters, ...
input_pad_sparams, output_pad_sparams);

Create a data object for the de-embedded S-parameters. In a later step, you
use this data object to plot the de-embedded S-parameters.

de_embedded_data = rfdata.data("z0",z0, ...
*S_Parameters” ,de_embedded_sparanms, . ..
"Freq®,freq);

Plot the measured and de-embedded S;; parameters. Type the following set of
commands at the MATLAB prompt to plot both the measured and the de-embedded
S11 parameters on a Z Smith Chart:

hold off;

h = smith(measured_data, "S11");

set(h, "Color", [1 0 O]);

hold on

i = smith(de_embedded_data,"S11%);
set(i,"Color®, [0 O 1], LineStyle",":");

1 = legend;

legend("Measured S_{11}", "De-embedded S {11}");
legend show;

3-41

3 Model an RF Component
P

T =lolx|

File Edit Wwiew Insert Tools Desktop ‘Window Help

Ded&| k| fRade & 0B O

+1.0

Meazured 811
....... De-embedded 811

1.0

6 Plot the measured and de-embedded S,, parameters. Type the following set of

commands at the MATLAB prompt to plot the measured and the de-embedded S,
parameters on a Z Smith Chart:

figure;

hold off;

h = smith(measured_data, "S22");

set(h, "Color®, [1 0 O]);

hold on

i = smith(de_embedded_data, "S22");
set(i,"Color®, [0 O 1], LineStyle",":");

1 = legend;

legend("Measured S_{22}", "De-embedded S_{22}");
legend show;

3-42

Basic Operations with RF Objects

~ipixi
k']

File Edit Wwiew Insert Tools Desktop ‘Window Help

Ded&| k| fRade & 0B O

+1.0

Meazured 822
....... De-embedded 822

1.0

Plot the measured and de-embedded S,;; parameters. Type the following set of
commands at the MATLAB prompt to plot the measured and the de-embedded Sy,
parameters, in decibels, on an X-Y plane:

figure

hold off;

h = plot(measured_data,"S21", "db");
set(h, "Color®, [1 0 O]);

hold on

i = plot(de_embedded_data, "S21","db");
set(i,"Color®, [0 O 1], LineStyle",":");
1 = legend;

legend("Measured S_{21}", "De-embedded S_{21}");
legend show;

hold off;

3-43

3 Model an RF Component
P

=lol=]

Tools Desktop Window Help

Ded&| k| fRade & 0B O

Edit Wiew Insert

File

Meazured 821

A

20f----

R[] T
12 feemeas

(sieqroep) spnyubiepy

Freq [GHz]

3-44

Export Verilog-A Models

* “Model RF Objects Using Verilog-A” on page 4-2
+ “Export a Verilog-A Model” on page 4-4

4 Export Verilog-A Models

Model RF Objects Using Verilog-A

4-2

In this section...

“Overview” on page 4-2
“Behavioral Modeling Using Verilog-A” on page 4-2
“Supported Verilog-A Models” on page 4-3

Overview

Verilog-A is a language for modeling the high-level behavior of analog components
and networks. Verilog-A describes components mathematically, for fast and accurate
simulation.

RF Toolbox software lets you export a Verilog-A description of your circuit. You can
create a Verilog-A model of any passive RF component or network and use it as a
behavioral model for transient analysis in a third-party circuit simulator. This capability
1s useful in signal integrity engineering. For example, you can import the measured
four-port S-parameters of a backplane into the toolbox, export a Verilog-A model of the
backplane to a circuit simulator, and use the model to determine the performance of your
driver and receiver circuitry when they are communicating across the backplane.

Behavioral Modeling Using Verilog-A

The Verilog-A language is a high-level language that uses modules to describe the
structure and behavior of analog systems and their components. A module is a
programming building block that forms an executable specification of the system.

Verilog-A uses modules to capture high-level analog behavior of components and
systems. Modules describe circuit behavior in terms of

* Input and output nets characterized by predefined Verilog-A disciplines that describe
the attributes of the nets.

+ Equations and module parameters that define the relationship between the input and
output nets mathematically.

When you create a Verilog-A model of your circuit, the toolbox writes a Verilog-A module
that specifies circuit's input and output nets and the mathematical equations that
describe how the circuit operates on the input to produce the output.

Model RF Objects Using Verilog-A

Supported Verilog-A Models

RF Toolbox software lets you export a Verilog-A model of an rfmodel object. The toolbox
provides one rfmodel object, rfmodel . rational, that you can use to represent any RF
component or network for export to Verilog-A.

The rfmodel . rational object represents components as rational functions in
pole-residue form, as described in the rfmodel . rational reference page. This
representation can include complex poles and residues, which occur in complex-conjugate
pairs.

The toolbox implements each rfmodel . rational object as a series of Laplace
Transform S-domain filters in Verilog-A using the numerator-denominator form of the
Laplace transform filter:

where

* M s the order of the numerator polynomial.
* Mis the order of the denominator polynomial.
* ny1s the coefficient of the kth power of s in the numerator.

* d} is the coefficient of the kth power of s in the denominator.

The number of poles in the rational function is related to the number of Laplace
transform filters in the Verilog-A module. However, there is not a one-to-one
correspondence between the two. The difference arises because the toolbox combines each
pair of complex-conjugate poles and the corresponding residues in the rational function to
form a Laplace transform numerator and denominator with real coefficients. the toolbox
converts the real poles of the rational function directly to a Laplace transform filter in
numerator-denominator form.

4 Export Verilog-A Models

Export a Verilog-A Model

In this section...

“Represent a Circuit Object with a Model Object” on page 4-4
“Write a Verilog-A Module” on page 4-5

Represent a Circuit Object with a Model Object

Before you can write a Verilog-A model of an RF circuit object, you need to create an
rfmodel . rational object to represent the component.

There are two ways to create an RF model object:
* You can fit a rational function model to the component data using the rational it
function.

* You can use the rfmodel . rational constructor to specify the pole-residue
representation of the component directly.

This section discusses using a rational function model. For more information on using the
constructor, see the rfmodel . rational reference page.

When you use the rational fit function to create an rfmodel . rational object that
represents an RF component, the arguments you specify affect how quickly the resulting
Verilog-A model runs in a circuit simulator.

You can use the rational fit function with only the two required arguments. The
syntax is:

model_obj = rationalfit(freq,data)
where

* model_obj is a handle to the rational function model object.
+ freq is a vector of frequency values that correspond to the data values.
+ data is a vector that contains the data to fit.

For faster simulation, create a model object with the smallest number of poles required to
accurately represent the component. To control the number of poles, use the syntax:

Export a Verilog-A Model

model_obj = rationalfit(freq,data,tol,weight,delayfactor)
where

+ tol — the relative error-fitting tolerance, in decibels. Specify the largest acceptable
tolerance for your application. Using tighter tolerance values may force the
rationalfit function to add more poles to the model to achieve a better fit.

+ weight — a vector that specifies the weighting of the fit at each frequency.

+ delayfactor — a value that controls the amount of delay used to fit the data. Delay
introduces a phase shift in the frequency domain that may require a large number
of poles to fit using a rational function model. When you specify the delay factor, the
rational fit function represents the delay as an exponential phase shift. This phase
shift allows the function to fit the data using fewer poles.

These arguments are described in detail in the rational it function reference page.

Note: You can also specify the number of poles directly using the npoles argument.
The model accuracy is not guaranteed with approach, so you should not specify npoles
when accuracy is critical. For more information on the npoles argument, see the
rational Fit reference page.

If you plan to integrate the Verilog-A module into a large design for simulation using
detailed models, such as transistor-level circuit models, the simulation time consumed
by a Verilog-A module may have a trivial impact on the overall simulation time. In this
case, there is no reason to take the time to optimize the rational function model of the
component.

For more information on the rationalfit function arguments, see the rational fit
reference page.

Write a Verilog-A Module

You use the writeva method to create a Verilog-A module that describes the RF model
object. This method writes the module to a specified file. Use the syntax:

status = writeva(model _obj,"objl1",{"inp","inn"},{ " outp™,"outn"})

to write a Verilog-A module for the model object model obj to the file obj1l.va. The
module has differential input nets, 21np and inn, and differential output nets, outp and

4-5

4 Export Verilog-A Models

outn. The method returns status, a logical value of true if the operation is successful
and false otherwise.

The writeva reference page describes the method arguments in detail.

An example of exporting a Verilog-A module appears in the RF Toolbox example,
Modeling a High-Speed Backplane (Part 5: Rational Function Model to a Verilog-A
Module).

4-6

The RF Design and Analysis App

* “The RF Design and Analysis App” on page 5-2
+ “Create and Import Circuits ” on page 5-6

+ “Modify Component Data ” on page 5-20

* “Analyze Circuits” on page 5-21

+ “Export RF Objects ” on page 5-24

+ “Manage Circuits and Sessions” on page 5-29

* “Model an RF Network ” on page 5-33

5 Therr Design and Analysis App

The RF Design and Analysis App

5-2

In this section...

“What Is the RF Design and Analysis App?” on page 5-2
“Open the RF Design and Analysis App” on page 5-2
“The RF Design and Analysis Window ” on page 5-3

“The RF Design and Analysis App Workflow” on page 5-4

What Is the RF Design and Analysis App?

The RF Design and Analysis is an app that provides a visual interface for creating and
analyzing RF components and networks. You can use the RF Design and Analysis app as
a convenient alternative to the command-line RF circuit design and analysis objects and
methods that come with RF Toolbox software.

The RF Design and Analysis app provides the ability to

+ Create and import circuits.
+ Set circuit parameters.
* Analyze circuits.

+ Display circuit S-parameters in tabular form and on X-Y plots, polar plots, and Smith
Charts.

+ Export circuit data to the MATLAB workspace and to data files.

Open the RF Design and Analysis App
To open the app window, type the following at the MATLAB prompt:
rftool

For a description of the RF Design and Analysis user interface , see “The RF Design
and Analysis Window ” on page 5-3. To learn how to create and import circuits, see
“Create and Import Circuits ” on page 5-6.

Note: The work you do with this app is organized into sessions. Each session is a
collection of independent RF circuits, which can be RF components or RF networks. You

The RF Design and Analysis App

can save sessions and then load them for later use. For more information, see “Working
with the RF Design and Analysis App Sessions” on page 5-30.

The RF Design and Analysis Window
The app window consists of the following three panes:
* RF Component List

Shows the components and networks in the session. The top-level node is the session.

+ Component Parameters

Displays options and settings pertaining to the node you selected in the RF
Component List pane.

+ Analysis
Displays options and settings pertaining to the circuit analysis and results display.
After you analyze the circuit, this pane displays the analysis results and provides an

interface for you to view the S-parameter data and modify the displayed plots.

The following figure shows the app window.

5-3

5 Therr Design and Analysis App

4| RF Design and Analysis

[=1 ==
File Window Help
RF Component List Component Parameters
B] ntitled session Name: untitied session Type: R Tool Session
Analysis

Frequency: [[1ca 508.209] Reference impedance: 0

Data

Analyze View
@) Plots
Smith Chart XY Plot Polar Plot
Z Chart - Y options: Log (dB) | Magnitude hd|
X options: Linear -
1
0
& o5
O
]
¥
@ 0
=
=
S 0.5
@
=
-1
2 2 2 2 2
Freq [GHz]
& 511 512] [¥] 522 [511 Flsi12 [s22 £ 511 & 512 [} [s22

The RF Design and Analysis App Workflow

When you analyze a circuit using the app user interface your workflow might include the
following tasks:

1 Build the circuit by

* Creating RF components and networks.

Importing components and networks from the MATLAB workspace or from a data
file.

See “Create and Import Circuits ” on page 5-6.

5-4

The RF Design and Analysis App

Specify component data.

See “Modify Component Data ” on page 5-20.

Analyze the circuit.

See “Analyze Circuits” on page 5-21.

Export the circuit to the MATLAB workspace or to a file.

See “Export RF Objects ” on page 5-24.

5-5

5 Therr Design and Analysis App

Create and Import Circuits

5-6

In this section...

“Circuits in the RF Design and Analysis App” on page 5-6

“Create RF Components” on page 5-6

“Create RF Networks ” on page 5-10

“Import RF Objects into the RF Design and Analysis App” on page 5-16

Circuits in the RF Design and Analysis App

In this app, you can create circuits that include RF components and RF networks.
Networks can contain both components and other networks.

Note: In the circuit object command line interface, you create networks by building
components and then connecting them together to form a network. In contrast, you build
networks in the app by creating a network and then populating it with components.

Create RF Components

This section contains the following topics:

+ “Available RF Components” on page 5-6
+ “Add an RF Component to a Session” on page 5-7

Available RF Components

The following table lists the RF components you can create using the app and the
corresponding RF Toolbox object.

RF Component Corresponding RF Object
Data File rfckt.datafile
Delay Line rfckt.delay

Coaxial Transmission Line rfckt.coaxial

Create and Import Circuits

RF Component

Corresponding RF Object

Coplanar Waveguide Transmission Line

rfckt.cpw

Microstrip Transmission Line

rfckt.microstrip

Parallel-Plate Transmission Line

rfckt._parallelplate

Transmission Line

rfckt.txline

Two-Wire Transmission Line

rfckt.twowire

Series RLC rfckt._seriesrlc
Shunt RLC rfckt._shuntric

LC Bandpass Pi rfckt. lcbandpasspi
LC Bandpass Tee rfckt. lcbandpasstee

L.C Bandstop Pi

rfckt. lcbandstoppi

LC Bandstop Tee

rfckt. lcbandstoptee

LC Highpass Pi

rfckt. Ichighpasspi

LC Highpass Tee

rfckt. lchighpasstee

LC Lowpass Pi

rfckt. Iclowpasspi

LC Lowpass Tee

rfckt. Iclowpasstee

Add an RF Component to a Session

1 Inthe RF Component List pane, click Add to open the Create Network or

Component dialog box.

5-7

5 Therr Design and Analysis App

{4 Create Metwork or Component o || B 8

Create RF Network or Component
Component @ Network

Network Name: |Metwork

Metwork Type: |Cascaded Network -

OK

In the Create Network or Component dialog box, select Component.

In the Component Name field, enter a name for the component. This name is used
to identify the component in the RF Component List pane. For example, Microstrip
Component.

From the Component Type menu, select the type of RF component you want to
create. For example, Microstrip Transmission Line.

Create and Import Circuits

Create RF Network or Component

@ Component) Network

Component Name: |Microstrip Component

Component Type: | Microstrip Transmission Line v:
Parameter name Value

1 Width (m) o.0006 -
2 [Height (m) 0.000635
3 | Thickness (m) 5e-06
4 |EpsilonR 9.8 =
5 |Loss tangent of dielectric 0
6 |Conductivity of conductor (5/m) Inf
7 |Line Length (m) 0.01 i
8 |5tub Mode MotAStub 2

[4] Create Netwark or Component [=)= [=]

Adjust the parameter values as necessary.

Note: You can accept the default values for some or all of the parameters and then
change them later. For information on modifying the parameter values of an existing

component, see “Modify Component Data ” on page 5-20.

Click OK.

The app adds the component to your session.

5-9

5 Therr Design and Analysis App

RF Component List

BG untitled session

4 " WMicrostrip Component

[Add] ’ Delete

Create RF Networks

You create an RF network using the app by adding a network to the session and then
adding components to the network.

This section contains the following topics:

+ “Available RF Networks” on page 5-10

+ “Add an RF Network to a Session” on page 5-11

+ “Populate an RF Network” on page 5-13

* “Reorder Circuits Within a Network” on page 5-15

Available RF Networks

The following table lists the RF networks you can create using the app.

RF Network Corresponding RF Toolbox Object
Cascaded Network rfckt.cascade

Series Connected Network rfckt._series

Parallel Connected Network rfckt._parallel

Hybrid Connected Network rfckt._hybrid

Inverse Hybrid Connected Network rfckt.hybridg

5-10

Create and Import Circuits

Add an RF Network to a Session
1 Inthe RF Component List pane, click Add to open the Create Network or
Component dialog box.
4| Create Netwark or Compeonent EI = @
Create RF Network or Component

Component @ Network

Network Name: |Network

Metwork Type: |Cascaded Network -

2 In the Create Network or Component dialog box, select the Network option button.

In the Network Name field, enter a name for the component. This name is used to
identify the network in the RF Component List pane. For example, Series].

4 From the Network Type menu, select the type of RF network you want to create.
For example, Series Connected Network.

5-11

5 Therr Design and Analysis App

TCreateNetworkorComponent EI = @

Create RF Network or Component
) Component @ Network

Network Name: | Series1

Network Type: |Series Connected Network v:
5 Click OK.

The RF Component List pane shows the new network.

RF Component List

BG untitled session
(- Seriesl

Add | | Dekete

5-12

Create and Import Circuits

Populate an RF Network

After you create a network using the app, you must populate it with RF components and
networks. You insert a component or network into a network in much the same way you
add one to a session.

To populate an RF network:

1

In the RF Component List pane, select the network component you want to
modify. Then, in the Component Parameters pane, click Insert.

4 RF Design and Analysis* =|-=-
File Window Help

RF Component List Companent Parameters

. Hame: Series! Type Series Connected Hetwork:
=@ untitled session
§ -

W Seriesl

The Insert Component or Network dialog box appears.

5-13

5 Therr Design and Analysis App

5-14

4] Insert Component or Network

Inzert RF Component or Network

===

(@ Component () Network
Component Name: |Component
Component Type: | Delay Line x|
Parameter name Value
1 [70 {ohms) 50
2 |Loss (dB/m) 0
3 |Time Delay 1le-12

2 Click Component or Network in the Insert Component or Network dialog box to

add either a component or a network.

Enter the component or network name, and select the appropriate type. If you are
inserting a component, modify the parameter values as necessary. See “Add an RF
Component to a Session” on page 5-7 or “Add an RF Network to a Session” on

page 5-11 for details.

As you insert components and networks into a network, they are reflected in the RF
Component List and Component Parameters panes. The figure below shows an
example of a cascaded network that contains two components and a network. The

subnetwork, in turn, contains two components.

Create and Import Circuits

RF Component List

BG untitled session
=6 Network
B Component
B Compeonentl
1§ Networkl
=G Component2
@ Component3

Component Parameters:

Name |network Type: Cascaded Network
Parameter name Value
Insert
1 [Component Transmission Line
2 |Componentl Transmission Line
3 |Metworkl Cascaded Network
Apply

Reorder Circuits Within a Network

To change the order of the components and networks within a network:

1 Inthe RF Component List pane, select the network whose circuits you want to
reorder.

2 Inthe Component Parameters pane, select the circuit whose position you want to
change.

3 Click Up or Down until the circuit is where you want it.

To reverse the positions of Componentl and Networkl in the network shown in the

following figure:

1 Select Network in the RF Component List pane.

2 Select Componentl in the Component Parameters pane.

3 Click Down in the Component Parameters pane.

RF Component List

=8 untitled session
-G Network
' & Component
' & Componentl

& Networkl

Compenent Parameters

Name: Network

Type:

1 |Component

Parameter name

Transmission Line

2 [Componentl

Transmission Line

3 |Metworkl

Cascaded Network

Insert
Cw)

| Move selected component down

Apply

5-15

5 Therr Design and Analysis App

5-16

Import RF Objects into the RF Design and Analysis App

The RF Design and Analysis app lets you import RF objects from your workspace and
from files to the top level of your session. You can import the following types of objects:

Complex component and network objects that you created in your workspace using RF
Toolbox objects.

Components and networks you exported into your workspace from another session.

For information on exporting components and networks from another session, see
“Export RF Objects ” on page 5-24.

After you have imported an object, you can change its name and work with it as you
would any other component or network.

This section contains the following topics:

* “Import from the Workspace” on page 5-16
* “Import from a File into a Session” on page 5-17

* “Import from a File into a Network” on page 5-18
Import from the Workspace
To import RF circuit objects from the MATLAB workspace into your session:

1 Select Import From Workspace from the File menu. The Import from Workspace

dialog box appears. This dialog box lists the handles of all RF circuit (rfckt) objects
in the workspace.

[4] Import from Warkspace | = || @ || 22 |
RF Objects in Workspace

Create and Import Circuits

2 From the list of RF circuit objects, select the object you want to import, and click OK.

The object is added to your session with the same name as the object handle. If there
is already a circuit by that name, the app appends a numeral, starting with 1, to the
new circuit name.

Import from a File into a Session

You can import RF components from the following types of files into the top level of your
session:

- S2P
+ Y2P
+ 72P
+ H2P

To import a component from one of these files:

1 Select Import From File from the File menu. A file browser appears.
2 Select the file type you want to import.

3 Select the name of the file to import from the list of files in the browser.

y
Impeet from File B |
@\:—)o s O8Disk (C1) o Program Files » MATLAE » RX0ddb » toolbos v o & rnetparamides - |y h ifmetpa roanfile -
iganize = Mo Folder — I
[Favorites e e e Type o
Pralolic 1] defauli.clp
Bl Dwikiop defsultbandpass.sip
Dowrlosds 5 7] InsdatasZp
Mathmori ! meeasured.slp
4. Recent Places 1 passheslp
B Vidys Gopalskrizhs 1) reCRERTY puilp
toolbes samplebjil s2p
1 semplebjiZalp
o Libraries 1) sampleinal op
+ Documents ! traremitamps2p
o' Music
| Pictures
B videos
% Compuber
‘-_" O Dl

o el [\ st
¥ hub (i mathworis
R L -

File name: = |(alp) =

Open |v] [Camcel

5-17

5 Therr Design and Analysis App

5-18

4 Click Open to add the object to your session as a component.

RF Component List Compoenent Parameters

=@ untitled session Name: okt W et e
@@ Component
- m Parameter narne Value
1 [Interpolation Linear
2 |File Name default.s2p
Add Delete \&I

The name of the component is the file name without the extension. If there is already
a component by that name, the app appends a numeral, starting with 1, to the new
component name. The file name, including the extension, appears as the value of the
component's File Name parameter. If the file is not on the MATLAB path, the value
of the File Name parameter also contains the file path.

Import from a File into a Network

You can import RF components from the following types of files into a network:

+ S2P
+ Y2P
+ Z2P
+ H2P

To import an RF component from a file into a network:
1 Insert a Data File component into the network.
For more information on how add a component to a network, see “Populate an RF
Network” on page 5-13.
2 Specify the name of the file from which to import the component in one of two ways:
Select the file name in the file name and type in the Import from File dialog box,
and click Open.

+ Click Cancel to get out of the Import from File dialog box, and enter the file
name in the Value field across from the File Name parameter in the Insert
Component or Network dialog box.

Create and Import Circuits

“Model an RF Network ” on page 5-33 shows this process.

5-19

5 Therr Design and Analysis App

Modify Component Data

5-20

You can change the values of component parameters that you create and import. The
component parameters in the app correspond to the component properties that you
specify in the command line.

To modify these values:

1 Select the component in the RF Component List pane.

2 Inthe Component Parameters pane, select the value you want to change, and
enter the new value.

Valid values for component parameters are listed on the corresponding RF Toolbox
reference page. Use the links in “Available RF Components” on page 5-6 and
“Available RF Networks” on page 5-10 to access these pages.

3 Click Apply.

Analyze Circuits

Analyze Circuits

After you add your circuits, you can analyze them using the app:

1 Select the component or network you want to analyze in the RF Component List
pane of the RF Design and Analysis app. For example, select the LLC Bandpass Pi
component, as shown in the following figure.

RF Component List Component Parameters:
Data File

Name: Type:
-8 untitled session default

=ﬁ Component

Parameter name Value

1 [interpolation Linear
2 |File Name defaults2p

A

2 In the Analysis pane:

+ Enter [1e8:5e6:2e9], the analysis frequency range and step size in hertz, in
the Frequency field.

This value specifies an analysis from 0.1 GHz to 2 GHz in 5 MHz steps.

Enter 50, the reference impedance in ohms, in the Reference impedance field.

Analysis

Frequency: | [1e8:5e5:2e8] Reference impedance: 50

Note: Alternately, you can specify the Frequency and Reference impedance
values as MATLAB workspace variables or as valid MATLAB expressions.

3 Click Analyze.

The Analysis pane displays a Smith Chart, an XY plot, and a polar plot of the
analyzed circuit.

5-21

5 Therr Design and Analysis App

4 RF Design and Analysis™ EI@
File Window Help
RF Component List Compoenent Parameters
Type: LC Bandpass Pi
=@ untitled session Mame: | Companent i "
-
Parameter name Value
1L H) 1.4446e-09 4.3949e-08 1.44462-09 sert
2|C(R 3.5785e-111.1762e-12 3.5785e-11 Up
Dowen
A
Analysis
Frequency. 1g+03:5e+06:28+09 Reference impedance: 50 View:) Data
@) Plots
Smith Chart 0¥ Piot Polar Piot
7 Chart - ¥ options: Log (dB) v |Magnitude v
X options: Linear -
-0.0000
0
g -20.0000
2
3 -40.0000
2
3 -60.0000
7 -80.0000
H
-100 |
0.5 1 15 2
Freq [GHz]
& 511 Elsiz] [¥] 522 [511 Flsi12 [s22] 511 & 512] [s22

4 Select or deselect the S-parameter check boxes at the bottom of each plot to
customize the parameters that the plot displays. Use the drop-down list at the top of
each plot to customize the plot options.

The plots automatically update as you change the check box and drop-down list
options on the user interface.

5 Click Data in the upper-right corner of the Analysis pane to view the data in
tabular form. The following figure shows the analysis data for the LL.C Bandpass Pi
component at the frequencies and reference impedance shown in step 2.

5-22

Analyze Circuits

4| RF Design and Analysis*
File Window Help

RF Component List

=8 untitled session

g Component]

Component Parameters

Hame: component

Type:

LC Bandpass Pi

Parameter name

1)L H)

Walue

1.4446e-09 4.3940e-08 14446e-09

2|C(H

3.5785e-11 1.1762e-12 3.5785e-11

Analysis
Frequency: |1e-08.5e+06:2e+09 Reference impedance: 50 View:
©) Piots
Freq 20log10]s11| <si1 20l0g10]521]| <521 Wlogl0}s12| <512 2log10]522| <522
1fles0s 0000 177875 91722 92125 01722 -92125 -0.000 177875 -
2 1.05e+08 -0.000 177764 90394 92236 -90.394 9223 -0.000 177764
3 11e+08 -0.000 177652 -£9.122 92348 80122 02348 -0.000 177652
4 115e+08 -0.000 177539 -87.901 92461 -87.901 -02.461 -0.000 177539
5 [L2e+08 -0.000 177426 -86.727 92574 86727 -92.574 -0.000 177426
6 L25e+08 -0.000 177312 -85.595 92688 -85.595 -92.688 -0.000 177312
7 [L3e-08 -0.000 +177.196 84501 -92804 -84.501 -92.804 -0.000 +177.19
8 [L35e+08 -0.000 +177.080 -83.443 -92920 83443 -92920 -0.000 +177.080
9 [L4e+08 -0.000 +176.963 -82418 -93.037 82418 -93.037 -0.000 +176.963
10 145¢+08 -0.000 176844 81423 93156 81423 93156 -0.000 176844
11 15¢+08 -0.000 176725 80456 93275 80456 -93.275 -0.000 176725
12 1.55+08 -0.000 176,604 -79.515 93396 79515 -93395 -0.000 176,604
13 L6e+08 -0.000 176483 -718.598 93517 -78.598 -93.517 -0.000 176483
14 165¢+08 -0.000 +176.359 17103 93641 77703 -93.641 -0.000 +176.359
15 L7e+08 -0.000 +176.235 -76.829 -93.765 76829 -93.765 -0.000 +176.235
16 1.75¢+08 -0.000 +176.109 75974 -93801 75974 -93.891 -0.000 +176.109
171.8¢+08 -0.000 175982 -75137 -94.018 75137 -94.018 -0.000 175982 2

Note: The magnitude, in decibels, of S;; is listed in the 20log10[S11] column and the
phase, in degrees, of Si; is listed in the <S11 column.

5-23

5 Therr Design and Analysis App

Export RF Objects

5-24

In this section...

“Export Components and Networks” on page 5-24
“Export to the Workspace” on page 5-24
“Export to a File” on page 5-26

Export Components and Networks

You can export RF components and networks that you create and refine it in the RF
Design and Analysis app to your MATLAB workspace or to files. You export circuits for
the following reasons:

* To perform additional analysis using RF Toolbox functions that are not available in
the app.
* To incorporate them into larger RF systems.

+ To import them into another session.

Export to the Workspace

The RF Design and Analysis app enables you to export components and networks to the
MATLAB workspace. In your workspace, you can use the resulting circuit (rfckt) object
as you would any other RF circuit object.

To export a component or network to the workspace:

1 Select the component or network to export in the RF Component List pane of the
app.

Export RF Objects

RF Component List

Elﬁ untitled session

ﬁ Component
-6 Network

i@ Componentl
‘B Component2

[Add] l Delete]

Select Export to Workspace from the File menu.

Enter a name for the exported object's handle in the Variable name field and click
OK. The default name is the name of the component or network prefaced with the

character vector "rft_".

E Export to Workspace E = @

Variable name: |rfi_Compeonent1

The component or network becomes accessible in the workspace via the specified
object handle.

5-25

5 Therr Design and Analysis App

5-26

Workspace

MName = Walue
ft_Componentl 1xl twowire

Export to a File

The RF Design and Analysis app lets you export components and networks to files in S2P
format.

Note: You must analyze a component or network in the RF Design and Analysis
app before you can export it to a file. See “Analyze Circuits” on page 5-21 for more
information.

To export a component or network to a file:

1 Select the component or network to export in the RF Component List pane of the
app.

Export RF Objects

—RF Component List

=@ untitled sessicn
& Compenent

=@ [Netwerk

Select Export To File from the File menu to open the file browser.

-

Organize = Pew folder

5\ =[Ok (C) b Frogrem Fies » MATLAS b RAILAD b tonlbox » 11 b dnetpmeniies

I

W Favorites
L Public
M Desktop
B Downloads
&

M

2] defmidp
|5 defwuibandpassidp

5L Recent Places |
B Nty Gopatabricl
i toolbox

4l Libraries
| Dotuments

o Music

B vedeen

= Computer
& ok icy

B A (Ve ™

2] sanpleinal sdp
|8} transeitamp.slp

File nare: rft_Componentlalp

Duite randified
Tr/2012 5:30 PIA
7247012 %20 P
2472002 5.0 P
L1/Z002 34 PR
11,08/200 2 304 A
1IN TAR PM
4TH2 5. PM
T2470002 5.0 P
TN 5:20 PM
1ELA02 TR P

Type
S2P File
2P Filg
S2P File
52P File
2P File
2P File
52P File
S2P File
2P File
S2P File

19 KB
03 KB
6 KB
KB
18 KB
TIB
THE
GKB
I KB
1B

Save s type: | (“a2p)

&, Hide Folders

Co) o

Browse to the appropriate directory. Enter the name you want to give the file and

click Save.

5-27

5 Therr Design and Analysis App

The default file name is the current name of the component or network prefaced
with the character vector "rft_". The app also converts any characters that are not
alphanumeric to underscores ().

5-28

Manage Circuits and Sessions

Manage Circuits and Sessions

In this section...

“Working with Circuits” on page 5-29
“Working with the RF Design and Analysis App Sessions” on page 5-30

Working with Circuits

In addition to building and specifying circuits, the RF Design and Analysis app window
allows you to perform the following tasks:

* “Delete a Circuit” on page 5-29

* “Rename a Circuit” on page 5-30

Delete a Circuit

To delete a circuit from your session:

1 Select the circuit in the RF Component List pane.

2 Click Delete.

Note: If the circuit you delete is a network, the app deletes the network and everything

in the network.

RF Component List

Bg untitled session

----- ﬁ Component

EI ﬁ Metwork

------ G Componentl
"""] Component2

Add

)

I

Delete I

Analysis

Delete selected item

5-29

5 Therr Design and Analysis App

Rename a Circuit
To rename a component or a network:

1 Select the component or network in the RF Component List pane.

2 Type the new name in the Name field of the Component Parameters pane.
3 Click Apply.

RF Component List Component Parameters

Mame: i Type: Two-Wire Transmission Line
=8 untitled session Twolire

=) Compenent
= ﬁ L Parameter name Walue

I: 1 [Radius (m) 0.00067 o
2 |Separation (m) 0.00162
3 |MuR 1
4 |EpsilonR 2.3
5 |Loss tangent of dielectric 0

m

6 [Conductivity of conductor (5/m) Inf

(m) ‘ A
7 |Line Length (m 001 -

Working with the RF Design and Analysis App Sessions

The work you do with the RF Design and Analysis app is organized into sessions. Each
session is a collection of independent RF circuits, which can be RF components or RF
networks.

This section contains the following topics:

+ “Name or Rename a Session” on page 5-30
+ “Save a Session” on page 5-31
+ “Open a Session” on page 5-31

+ “Start a New Session” on page 5-32
Name or Rename a Session
To name or rename a session:

1 Select the session, or top-level node, in the RF Component List pane. (The session
is selected by default when you open the app user interface.

2 Type the desired name in the Name field of the Component Parameters pane.

5-30

Manage Circuits and Sessions

3 Click Apply.
Save a Session

To save your session, select Save Session or Save Session As from the File menu. The
first time you save a session a browser opens, prompting you for a file name.

Note: The default file name is the session name with any characters that are not
alphanumeric converted to underscores (_). The name of the session itself is unchanged.

Recondings Bocuments

For example, to save your session as Test.rf in your current working directory, you
would type Test in the File name field as shown above. The RF Design and Analysis
app adds the . rf extension automatically to all the app sessions you save.

If the name of your session is gk"s session, the default file name is
gk_s_session.rf.

Open a Session
You can load an existing session into the RF Design and Analysis app by selecting Open

Session from the File menu. A browser enables you to select from your previously saved
sessions.

5-31

5 Therr Design and Analysis App

B R B B N

gt ApgDas Contacts Desitop Downkoads Fwvortss Links Lyne Wy
Recordings Doruments

v Mybdusc MyPictwes MyVideos Swved Searches

Before opening the requested session, the app prompts you to save your current session.

Start a New Session

To start a new session, select New Session from the File menu. A new session opens in
the app. All its values are set to their defaults.

Before starting a new session, the app prompts you to save your current session.

5-32

Model an RF Network

Model an RF Network

In this section...

“Overview” on page 5-33

“Start the RF Design and Analysis App” on page 5-33
“Create the Amplifier Network” on page 5-33
“Populate the Amplifier Network” on page 5-36
“Analyze the Amplifier Network” on page 5-39
“Export the Network to the Workspace” on page 5-41

Overview

In this example, you model the gain and noise figure of a cascaded network and then
analyze the network using the RF Design and Analysis app.

The network used in this example consists of an amplifier and two transmission lines.

Here, you learn how to create and analyze the network using the RF Design and Analysis
app.

Start the RF Design and Analysis App

Type the following command at the MATLAB prompt to open the app window:

rftool

For more information about this user interface, see “The RF Design and Analysis
Window ” on page 5-3.

Create the Amplifier Network

In this part of the example, you create a network to connect the amplifier components in
cascade.

1 Inthe RF Component List pane, click Add.

5-33

5 Therr Design and Analysis App

RF Component List

-l untitled session

The Create Network or Component dialog box opens.

2 In the Create Network or Component dialog box:

Select the Network option button.
In the Network Name field, enter Amplifier Network.

This name is used to identify the network in the RF Component List pane.

In the Network Type list, select Cascaded Network.

A Cascaded Network means that when you add components to the network, the
app connects them in cascade.

5-34

Model an RF Network

'TCreateNetworkorComponent EI = @

Create RF Network or Component
) Component @ Network

Network Name: |Metwork

Metwork Type: |Cascaded Network -

Click OK to add the cascaded network to the session.

The network now appears in the RF Component List pane.

RF Component List

Bﬁ untitled session
- Amplifier Network

Add] [Delete

5-35

5 Therr Design and Analysis App

5-36

Populate the Amplifier Network

This part of the example shows how to add the following components to the network:

+ “Transmission Line 1” on page 5-36
+ “Amplifier” on page 5-37

* “Transmission Line 2” on page 5-38
Transmission Line 1

1 Inthe Component Parameters pane, click Insert to open the Insert Component or
Network dialog box.

2 In the Insert Component or Network dialog box:

Select the Component option button.

* In the Component Name field, enter Short Transmission Line.

This name is used to identify the component in the RF Component List pane.
* In the Component Type drop-down list, select Transmission Line.
In the Value field across from the Line Length (m) parameter, enter 0.001.

Model an RF Network

E Create Metwork or Component E' (=l ”El

Create RF Network or Component

@ Component () Network

Component Mame: |Short Transmission Line|

Component Type: | Transmission Line v
Pararmeter name Value

1 |LinE Length () 0.01 =
2 |5tub Mode MotAStub
3 |Terminaticn MotApplicable
4 |Freq (Hz) 1000000000 o
5|20 (ohms) 50 [
6 |Phase Velocity (m,s) 299792458
7 |Loss (dBfm)] n
8 |Interpolation Linear w

3 Click OK to add the transmission line to the network.

Amplifier

1

In the Component Parameters pane, click Insert to open the Insert Component or
Network dialog box.

In the Insert Component or Network dialog box:

+ Select the Component option button.

* In the Component Name field, enter Amplifier.

5-37

5 Therr Design and Analysis App

This name is used to identify the component in the RF Component List pane.
* In the Component Type list, select Data File.

* In the Import from File dialog box that appears, click Cancel . You will specify
the name of the file from which to import data in a later step.

+ In the Value field across from the Interpolation parameter, enter cubic.

This value tells the app to use cubic interpolation to determine the behavior of
the amplifier at frequency values that are not specified explicitly in the data file.

* In the Value field across from the File Name parameter, enter default.amp.

4| Create Network or Component E' =] @

Create RF Network or Component
'@ Component Network

Component Name: |Component

Component Type: | Data File Z|
Parameter name Value
1 |Interpolation cubic
2 |File Name default.amp
oK

3 Click OK to add the amplifier to the network.
Transmission Line 2

1 Inthe Component Parameters pane, click Insert to open the Insert Component or
Network dialog box.

2 In the Insert Component or Network dialog box, perform the following actions:

Select the Component option button.

5-38

Model an RF Network

+ In the Component Name field, enter Long Transmission Line.

This name is used to identify the component in the RF Component List pane.
* In the Component Type list, select Transmission Line.
* In the Value field across from the Line Length (m) parameter, enter 0.025.

+ In the Value field across from the Phase Velocity (m/s) parameter, enter
2.0e8.

4| Create Network or Compenent EI = @

Create RF Network or Component

@ Component Network

Component Name: |Long Transmission Line

Component Type: | Transmission Line -
Parameter name Value

1 |Line Length (m) 0.025 -

2 |5tub Mode MotAStub

3 Termination Motipplicable

4 |Freq (Hz) 1000000000 L

5|20 (ohms) 50 [

6 Phase Velocity (m/s) P.Oa&

7 |Loss (dB/m) 0

8 |Interpolation Linear &
OK

3 Click OK to add the transmission line to the network.

Analyze the Amplifier Network

In this part of the example, you specify the range of frequencies over which to analyze the
amplifier network and then run the analysis.

1 In the Analysis pane, change the Frequency entry to [1.0e9:1e7:2.9e9].

This value specifies an analysis from 1 GHz to 2.9 GHz by 10 MHz.

5-39

5 Therr Design and Analysis App

In the Analysis pane, click Analyze to simulate the network at the specified

frequencies.

The RF Design and Analysis app displays a Smith Chart, an XY plot, and a polar plot of

the analyzed circuit.

[RF Design and Analysis™

File Window Help

RF Component List

=@ untitled session
o-@ Arnplifier Metwork
-8 Short Transmission Line
@@ Amplifier
-8 Leng Transmission Line

Analysis
Frequency: |1e+00:1g+072 Be-09
Smith Chart X Pt
7 Chart - ¥ options:
X options:
25
>
@ 20
=
s
- 16
8
S 10
=
g 5
=
0
511 B s12 a s22

You can modify the plots by

Component Parameters:

Name: | Ampiifier Network

Type:

g
q
4

Cascaded Network

Parameter name

Value

1 [Short Transmission Line

Transmission Line

2 | Amplifier

3 |Long Transmission Line

Data File

Transmission Line

Insert

Down

Apply

511

Reference impedance: 50 View:) Data
@ Plots
Polar Piot
Log (dB) hd Magnitude hd
Linear -
15 2 25
Freq [GHz]
B 512 [522 [511 51z (=] [0 s22

+ Selecting and deselecting the S-parameter check boxes at the bottom of each plot to
customize the parameters that the plot displays.

+ Using the drop-down list at the top of each plot to customize the plot options.

5-40

Model an RF Network

Export the Network to the Workspace

The RF Design and Analysis app lets you export components and networks to the
workspace as circuit objects so you can use the RF Toolbox functions to perform
additional analysis. This part of the example shows how to export the amplifier network
to the workspace.

1 In the app window, select File > Export to Workspace.
2 In the Variable name field, enter CascadedCkt.

This name is the exported object's handle.

’E Export to Workspace EIIEI@

ariable name: |Cascad edck'tl

3 Click OK.

The RF Design and Analysis app exports the amplifier network to an
rfckt.cascade object, with the specified object handle, in the MATLAB workspace.

Workspace

MName Value
Cascadedckt 1x1 coscade

5-41

Objects — Alphabetical List

6 Objects — Alphabetical List

6-2

rfbudget class

Create RF budget object and compute RF budget results

Syntax

rfobj = rfbudget

rfobj rfbudget(elements, inputfreq, inputpwr,bandwidth)
rfobj rfbudget(,autoupdate)

rfobj = rfbudget(Name,Value)

Description

rfobj = rfbudget creates an rfbudget object, rfobj, with default empty property
values.

rfobj = rfbudget(elements, inputfreq, inputpwr,bandwidth) creates an

RF budget object from the input RF elements, and independently computes an RF
budget analysis at the specified input frequencies, available input power, and signal
bandwidth. The input arguments are stored in the Elements, InputFrequency,
AvailablelnputPower, and SignalBandwidth properties. The analysis results are
stored in dependent properties. By default, if any of the input properties are changed, the
object recomputes results.

rfobj = rfbudget(,autoupdate) sets the "AUTOUPDATE" property to False.
Setting AutoUpdate to false turns off automatic budget recomputation as parameters
are changed. You can use this syntax with any of the precious syntaxes.

rfobj = rfbudget(Name,Value) creates RF budget object with additional properties
specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in
any order as Namel, Valuel, ..., NameN, ValueN. Properties not specified retain their
default values.

rfbudget class

Properties

"Elements” — RF budget elements
RF toolbox object | cell array of RF toolbox objects

RF budget elements, specified as the comma-separated pair consisting of "Elements*
and an RF toolbox object or cell array of RF toolbox objects. The possible elements are
amplifier, modulator, generic rfelement, and nport objects. To specify a circuit
consisting of multiple RF objects, specify the elements as a cell array.

Example: a = amplifier;m =modulator;rfbudget("Elements*,[a m])
calculates the RF budget analysis of the amplifier and modulator circuit.

" InputFrequency” — Input frequency of signal
nonnegative scalar or vector in Hz

Input frequency of signal, specified as the comma-separated pair consisting of
"InputFrequency” and a nonnegative scalar or vector in Hz. If the input frequency
is a vector, then the RF budget object calculates the analysis for each input frequency
separately.

Example: " InputFrequency”®,2e9

"AvailablelnputPower® — Power applied at input of cascade
scalar in dBm

Power applied at the input of the cascade, specified as the comma-separated pair
consisting of "Avai lablelnputPower® and a scalar in dBm.
Example: "AvailablelnputPower”®,-30

"SignalBandwidth” — Signal bandwidth at input of cascade
scalar in Hz

Signal bandwidth at the input of the cascade, specified as the comma-separated pair
consisting of "SignalBandwidth” and a scalar in Hz.

Example: "SignalBandwidth®,10

"AutoUpdate™ — Automatically recompute rf budget analysis
true (default) | false

6-3

6 Objects — Alphabetical List

Option to automatically recompute the RF budget analysis by incorporating changes
made to the existing circuit, specified as the comma-separated pair consisting of
"AutoUpdate” and a boolean scalar.

Example: "AutoUpdate® , true

"OutputFrequency” — Output frequencies
row vector in Hz

This is a read-only property.

Output frequencies, specified as the comma-separated pair consisting of
"OutputFrequency” and a row vector in Hz.

"OutputPower® — Output power
row vector in dBm

This 1s a read-only property.

Output power, specified as the comma-separated pair consisting of "OutputPower™ and
a row vector in dBm.

"TransducerGain” — Transducer power gains
row vector in dB

This is a read-only property.

Transducer power gains, specified as the comma-separated pair consisting of
"TransducerGain® and a row vector in dB.

"NF" — Noise figures
row vector in dB

This is a read-only property.

Noise figures, specified as the comma-separated pair consisting of *NF* and a row vector
in dB.

"01P3" — Output-referred third-order intercept
row vector in dBm

This is a read-only property.

Output-referred third-order intercept, specified as the comma-separated pair consisting
of "OIP3" and a row vector in dBm.

rfbudget class

"11P3" — Input-referred third-order intercept
row vector in dBm

This is a read-only property.

Input-referred third-order intercept, specified as the comma-separated pair consisting of
"11P3" and a row vector in dBm.

"SNR™ — Signal-to-noise ratio
row vector in dB

This is a read-only property.

Signal-to-noise ratio, specified as the comma-separated pair consisting of "SNR" and a
row vector in dB.

Methods

show Display RF budget analysis in RF Budget
Analyzer app

computeBudget Compute the results of an RF budget object

exportScript Export the MATLAB code that generates
an RF budget object

exportRFBlockset Create an RF Blockset model from the RF
budget object

exportTestbench Create a measurement testbench from an

RF budget analysis

Examples

Default RF Budget

Open a default RF budget object.

obj = rfbudget

obj =

6-5

6 Objects — Alphabetical List

rfbudget with properties:
Elements: []
InputFrequency: [] Hz
AvailablelnputPower: [] dBm

SignalBandwidth: [] Hz
AutoUpdate: true

RF Budget Analysis of Series of RF Elements
Create an amplifier with a gain of 4 dB.

a = amplifier("Gain",4);

Create a modulator with an OIP3 of 13 dBm.
m = modulator("0OIP3",13);

Create an nport using passive.s2p.

n = nport(“passive.s2p”);

Create an rf element with a gain of 10 dB.

r = rfelement("Gain”,10);

Calculate the rf budget of a series of rf elements at an input frequency of 2.1 GHz, an
available input power of -30 dB, and a bandwidth of 10 MHz.

b

rfbudget({a m r n},2.1e9,-30,10e6)

rfbudget with properties:

Elements: [1x4 rf.internal.rfbudget.Element]
InputFrequency: 2.1 GHz
AvailablelnputPower: -30 dBm
SignalBandwidth: 10 MHz
AutoUpdate: true

Analysis Results
OutputFrequency: (GHz) [2.1 3.1 3.1 3.1]

rfbudget class

OutputPower: (dBm)
TransducerGain: (dB)
NF: (dB)

OIP3: (dBm)

11P3: (dBm)
SNR: (dB)

[-26 -26
[4 4
L 0 0
[InF 13
[InF 9
[73.98 73.98

Show the analysis in the RF Budget Analyzer app.

show(b)

-16
14

23

73.98

-20.6]
9.4]
0.1392]
18.4]
9]
73.84]

4\ RF Budget Analyzer - untitled

ANALY SIS

[=[=][=]

BEialacD0

T oEd T B & 4
Mewy Cpen Save Delete Amplifier Modulstor S-parameters Generic Export
- - - -
FILE DELETE ADD ELBWENTS EXPORT a
| untitled |
System Parameters
Input frequency: (2.1 GHz | G 5115
211212
NF
Avsilable input pover: |-30 dBm IP3 521522
Signal banchwicttc 10 MHZ - Amplifier Modulator RFelement Sparams
Element Parameters Stage 1 3 4
Amplifier Gaind (dB) 4 0 10 -2.586
MF (dE) 1] 1] 1] 2.586
Mame: | Amplifier . OIP3 [dBrm) Inf 13 Inf Inf
Available povwer gain: |4 dB :
M Cascade 1 1.2 1.3 1.4
Moise figure: 0 dE Fout (GHz) 21 31 31 31
QIP3: Inf dBm Pout (dBm) -26 -26 -16 -20.6
. GainT (dE) 4 4 14 94
Input impedance: (S0 Ohm
MF (dE) 1] 1] 1] 013582
Output impedance: |50 Chm OIP3 (dEm) Int 13 23 184
SMR (dE) 7385 7385 7385 7384

See Also

amplifier | modulator | nport | rfelement

6-7

6 Objects — Alphabetical List

Introduced in R2017a

6-8

OpenlF class

OpenlF class

Find open intermediate frequencies (IFs) in multiband transmitter or receiver
architecture

Description
Use the OpenlF class to analyze the spurs and spur-free zones in a multiband

transmitter or receiver. This information helps you determine intermediate frequencies
(IFs) that do not produce interference in operating bands.

Construction

hif = OpenlF creates an intermediate-frequency (IF) planning object with properties
set to their default values.

hif = OpenlF(Name,Value) creates an intermediate-frequency (IF) planning object
with properties with additional options specified by one or more Name, Value pair

arguments.

hif = OpenlF(bandwidth) creates an intermediate-frequency (IF) planning object
with a specified IF bandwidth.

hif = OpenlF(bandwidth,Name,Value) creates an IF-planning object with a

specified IF bandwidth and additional options specified by one or more Name , Value pair
arguments.

Input Arguments
bandwidth

Specify the bandwidth of the IF signal. The bandwidth is a real positive scalar. The value
you provide sets the 1FBW property of your object. You can also set this property using an
optional name-value pair argument.

6-9

6 Objects — Alphabetical List

6-10

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments, where Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"IFLocation® — IF location
"MixerOutput® (default) | "MixerInput*®

Specify an up-conversion or down-conversion setup during object construction. The value
you provide sets the IFLocation property of your object.

"IFBW" — IF bandwidth
nonnegative number

Specify the IF bandwidth during object construction. The value you provide sets the 1FBW
property of your object. You can also set this property using the optional bandwidth
input argument.

"SpurFloor" — Spur floor
nonnegative number

Specify the spur floor during object construction. The value you provide sets the
SpurFloor property of your object.

Properties

IFLocation

Specify an up-conversion or down-conversion setup.

+ Setting IFLocation to "MixerInput” specifies an up-converting (transmitting)
configuration, where one IF is mixed up to multiple RFs. The following figure shows
this convention.

OpenlF class

Setting IFLocation to "MixerOutput” specifies a down-converting (receiving)
configuration, where multiple RFs are mixed down to one IF. The following figure
shows this convention.

fir

6-11

6 Objects — Alphabetical List

The setting of IFLocation determines the available values for the injection
argument of the addMixer method.

Default: "MixerOutput”
1FBW

Bandwidth of the IF signal in Hz. When you construct the object, the bandwidth
argument specifies the value of this property.

Mixers
Vector of objects that holds mixer information. When you add mixers using the
addMixer method, you also add an OpenlFMixer object to the Mixers vector of your

original OpenlF object.

The following table lists the properties of each OpenlFMixer object.

Property Description

IMT Intermodulation table of the mixer.
RFCF RF center frequency, in Hz.

RFBW RF bandwidth, in Hz.

MixingType Mixing (injection) type.
SpurVector Vector of spur information.

The IMT, RFCF, RFBW, and MixingType properties are required inputs to the addMixer
method.

NumMixers

Number of mixers. When you use the addMixer method, the number of mixers increases
by one. The likelihood of finding an open IF decreases as you add mixers.

SpurFloor
Maximum difference in magnitude between a signal at 0 dBc and an intermodulation

product that the OpenlF object considers a spur. The default value of this parameter is
99, corresponding to a spur floor of —99 dBc.

6-12

OpenlF class

Methods

Copy Semantics

To learn how handle classes use copy operations, see “Using Handles” (MATLAB) in the
MATLAB documentation.

Examples

Spur-free zones of a multiband receiver

Set up an OpenlF object as a multiband receiver, add three mixers to it, and obtain
information about its spur-free zones.

Define an OpenlF object. The first input is the bandwidth of the IF signal (50 MHz).
The "1FLocation”, "MixerOutput™ name-value pair specifies a downconverting
configuration.

hif = OpenlF(50e6, " IFLocation”, "MixerOutput™);

Define the first mixer with an intermodulation table and add it to the OpenlF object.
Mixer 1 has an LO at 2.4 GHz, has a bandwidth of 100 MHz, and uses low-side injection.

IMT1 = [99 00 21 17 26;

11 00 29 29 63;

60 48 70 65 41;

90 89 74 68 87; ...

99 99 95 99 99];
addMixer(hif,IMT1,2.4e9,100e6, " low");

Mixer 2 has an LO at 3.7 GHz, has a bandwidth of 150 MHz, and uses low-side injection.

IMT2 = [99 00 09 12 15;

20 00 26 31 48;

55 70 51 70 53;

85 90 60 70 94;

96 95 94 93 92];
addMixer(hif,IMT2,3.7e9,150e6, " low");

6-13

6 Objects — Alphabetical List

Mixer 3 has an LLO at 5 GHz, has a bandwidth of 200 MHz, and uses low-side injection.

IMT3 = [99 00 15 23 36; ...
10 00 34 27 59; ...
67 61 56 59 68; ...
97 82 81 60 77; ...
99 99 99 99 96];
addMixer (hif, IMT3,5e9,200e6, "low");

The multiband receiver is fully defined and ready for spur-free-zone analysis. Use the
report method to analyze and display spur and spur-free zone information at the
command line. The method also returns information about the mixers in the receiver.

hif.report

Intermediate Frequency (IF) Planner
IF Location: MixerOutput

-- MIXER 1 --

RF Center Frequency: 2.4 GHz

RF Bandwidth: 100 MHz

IF Bandwidth: 50 MHz

MixerType: low

Intermodulation Table: 99 0O 21 17 26
11 0 29 29 63
60 48 70 65 41
90 89 74 68 87
99 99 95 99 99

-- MIXER 2 -—-

RF Center Frequency: 3.7 GHz

RF Bandwidth: 150 MHz

IF Bandwidth: 50 MHz

MixerType: low

Intermodulation Table: 99 0 9 12 15
20 0 26 31 48
55 70 51 70 53
85 90 60 70 94
96 95 94 93 92

-- MIXER 3 --

RF Center Frequency: 5 GHz
RF Bandwidth: 200 MHz

IF Bandwidth: 50 MHz

6-14

OpenlF class

MixerType:
Intermodulation Table:

lTow

Spur-Free Zones:

350.00
530.00
643.75
1.38
2.10
2.28

430.
556.
655.
1.
2.
2.

00
25
00
41
17
29

MHZz
MHZz
MHZz
GHz
GHz
GHz

99
10
67
97
99

0
61
82
99

15
34
56
81
99

23
27
59
60
99

36
59
68
77
96

Use the show method to analyze the receiver and produce an interactive spur graph.
Generating a spur graph is a convenient way to summarize the results of the analysis

graphically.

figure;
hif.show

6-15

6 Objects — Alphabetical List

OpenlF Spur Graph

| R
-Mixer‘l
-10r I ixer 2
'|:|I".'1ixer 3
20F m
= -]
E a0k = - J— -
= —
@ 40 - -
=]
'HEJ: j—
ﬂ‘: —EI}— —r ,
73] -
2 50— —— L —
'g | o
f=3 | E—
en —?D= |]
——— —————
B0
I]
90—
1 I 1 | 1 1
1] 0.5 1 1.5 2
IF Center Freguencies (Hz) w«10%
References

Faria, Daniel, Lawrence Dunleavy, and Terje Svensen. “The Use of Intermodulation
Tables for Mixer Simulations.” Microwave Journal. Vol. 45, No. 4, December 2002, p. 60.

6-16

amplifier class

amplifier class

Amplifier object

Syntax

amp = amplifier
amp = amplifier(Name,Value)
Description

amp = amplifier creates an amplifier object with default property values. An amplifier
is a 2-port RF circuit object. You can use this element in the rfbudget object and the
circuit object.

amp = amplifier(Name,Value) creates an amplifier object with additional properties
specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in
any order as Namel, Valuel, ..., NameN, ValueN. Properties not specified retain their
default values.

Properties

"Name® — Name of amplifier
"Amplifier® (default) | character vector

Name of amplifier, specified as the comma-separated pair consisting of "Name™ and a
character vector. All names must be valid MATLAB variable names.

Example: "Name*® , "amp*®

"Gain" — Available power gain
0 (default) | real finite scalar in dB

Available power gain, specified as the comma-separated pair consisting of "Gain® and a
real finite scalar in dB.

6-17

6 Objects — Alphabetical List

6-18

Example: "Gain®,10

"NF" — Noise figure
O (default) | real finite nonnegative scalar in dB

Noise figure, specified as the comma-separated pair consisting of *NF" and a real finite
nonnegative scalar dB.
Example: "NF*",-10

"01P3" — Output third-order intercept
Inf (default) | scalar in dBm

Output third-order intercept, specified as the comma-separated pair consisting of "O1P3*
and a scalar in dBm
Example: "O1P3",10

"Zin" — Input impedance
50 (default) | positive real part finite scalar in ohms

Input impedance, specified as the comma-separated pair consisting of "Zin" and a
positive real part finite scalar in ohms. You can also use a complex value with a positive
real part.

Example: "Zin",40

"Zout" — Output impedance
50 (default) | positive real part finite scalar in ohms

Output impedance, specified as the comma-separated pair consisting of "Zout" and a
scalar in Oohms. You can also use a complex value with a positive real part.
Example: "Zout" ,40

"NumPorts™ — Number of ports
2 (default) | scalar integer

Number of ports, specified as the comma-separated pair consisting of *NumPorts® and a
scalar integer.
Example: "NumPorts”® ,4

"Terminals”™ — Names of port terminals
{"pl+" "pl-"} (default) | cell vector

amplifier class

Names of port terminals of amplifier object, specified as the comma-separated pair
consisting of "Terminals” and cell vector. These names are always p and n for positive
and negative ports.

Example: "Terminals®,{"pl+" "p2+" "pl-" "p2-"}

Examples

Amplifier Element
Create an amplifier object named "LNA' and has a gain of 10 dB.
a = amplifier("Name", "LNA","Gain",10)

a =
amplifier: Amplifier element

Name: "LNA*®
Gain: 10
NF: O
OIP3: InF
Zin: 50
Zout: 50

NumPorts: 2
Terminals: {"pl+® “p2+° “pl-° “p2-"}

Amplifier Circuit

Create an amplifier object with a gain of 4 dB. Create another amplifier object that has
an output third-order intercept (OIP3) 3 dBm.

ampl
amp2

amplifier(“Gain®,4);
amplifier("OIP37,13);

Build a 2-port circuit using the amplifiers.

c circuit([ampl amp2])

6-19

6 Objects — Alphabetical List

circuit: Circuit element
ElementNames: {"Amplifier®™ “Amplifier_1"}

Nodes: [0 1 2 3]

Name: “unnamed*®

NumPorts: 2
Terminals: {"pl+® “p2+*

pl-* "p2-T"}

RF Budget Analysis of Series of RF Elements
Create an amplifier with a gain of 4 dB.

a = amplifier("Gain",4);

Create a modulator with an OIP3 of 13 dBm.
m = modulator("0OIP3",13);

Create an nport using passive.s2p.

n = nport(“passive.s2p”);

Create an rf element with a gain of 10 dB.

r = rfelement("Gain”,10);

Calculate the rf budget of a series of rf elements at an input frequency of 2.1 GHz, an
available input power of -30 dB, and a bandwidth of 10 MHz.

b

rfbudget({a m r n},2.1e9,-30,10e6)

rfbudget with properties:

Elements: [1x4 rf.internal.rfbudget.Element]
InputFrequency: 2.1 GHz
AvailablelnputPower: -30 dBm
SignalBandwidth: 10 MHz
AutoUpdate: true

Analysis Results
OutputFrequency: (GHz) [2.1 3.1 3.1 3.1]

6-20

amplifier class

OutputPower: (dBm)
TransducerGain: (dB)
NF: (dB)

OIP3: (dBm)

11P3: (dBm)
SNR: (dB)

[-26 -26
[4 4
L 0 0
[InF 13
[InF 9
[73.98 73.98

Show the analysis in the RF Budget Analyzer app.

show(b)

-16
14

23

73.98

-20.6]
9.4]
0.1392]
18.4]
9]
73.84]

4\ RF Budget Analyzer - untitled

ANALY SIS

[=[=][=]

BEialacD0

T oEd T B & 4
Mewy Cpen Save Delete Amplifier Modulstor S-parameters Generic Export
- - - -
FILE DELETE ADD ELBWENTS EXPORT a
| untitled |
System Parameters
Input frequency: (2.1 GHz | G 5115
211212
NF
Avsilable input pover: |-30 dBm IP3 521522
Signal banchwicttc 10 MHZ - Amplifier Modulator RFelement Sparams
Element Parameters Stage 1 3 4
Amplifier Gaind (dB) 4 0 10 -2.586
MF (dE) 1] 1] 1] 2.586
Mame: | Amplifier . OIP3 [dBrm) Inf 13 Inf Inf
Available povwer gain: |4 dB :
M Cascade 1 1.2 1.3 1.4
Moise figure: 0 dE Fout (GHz) 21 31 31 31
QIP3: Inf dBm Pout (dBm) -26 -26 -16 -20.6
. GainT (dE) 4 4 14 94
Input impedance: (S0 Ohm
MF (dE) 1] 1] 1] 013582
Output impedance: |50 Chm OIP3 (dEm) Int 13 23 184
SMR (dE) 7385 7385 7385 7384

See Also

modulator | rfelement | nport | rfbudget

6-21

6 Objects — Alphabetical List

Introduced in R2017a

6-22

capacitor class

capacitor class

Capacitor object

Syntax
cobj = capacitor(cvalue)
cobj = capacitor(cvalue,cname)

Description

Use the capacitor class to create a capacitor object that you can add to an existing
circuit.

cobj = capacitor(cvalue) creates a capacitor object, cobj, with a capacitance of
cvalue and default name, C. cvalue must be a non-negative scalar.

cobj = capacitor(cvalue,cname) creates a capacitor object, cobj, with a
capacitance of cvalue and name cname. cname must be a character vector.

Properties

Capacitance — object value
scalar

Capacitance, in farads, of the capacitor object.

Name — Name of capacitor object
C (default) | character vector

6-23

6 Objects — Alphabetical List

6-24

Name of capacitor object, specified as a character vector. Two elements in the same
circuit cannot have the same name.

Terminals — Names of terminals of capacitor object
cell vector

Names of the terminals of capacitor object, specified as a cell vector. These names are
always p and n.

ParentPath — Full path of the circuit to which the capacitor object belongs
character vector

Full path of the circuit to which the capacitor object belongs, specified as character
vector. This path appears only after the capacitor is added to the circuit.

ParentNodes — Circuit nodes in the parent nodes connect to capacitor terminals
vector of integers.

Circuit nodes in the parent nodes connect to capacitor terminals, specified as a vector of
integers. This property is appears only after the capacitor is added to a circuit.

Examples

Create Capacitor and Display Properties

Create a capacitor of capacitance 2 microfarad and display its properties.

hCl = capacitor(2e-6);
disp(hCl)

capacitor: Capacitor element
Capacitance: 2.0000e-06
Name: *"C*
Terminals: {"p® "n"}
Create and Extract S-parameters of a Capacitor

Create a capacitor and extract S-parameters of the capacitor.

hC = capacitor(2e-6,"C2uf”);

capacitor class

hckt = circuit("example2®);
add(hckt,[1 2],hC)
setports(hckt, [1 0],[2 O])
freq = linspace(1e3,2e3,100);
S = sparameters(hckt,freq);
disp(S)

sparameters: S-parameters object

NumPorts: 2
Frequencies: [100x1 double]
Parameters: [2x2x100 double]
Impedance: 50

rfparam(obj,i,j) returns S-parameter Sij

Add Capacitor to Circuit and Display Properties

Add capacitor to a circuit, display the parent path and parent nodes.

hC3 = capacitor(3e-6, "C3uf");
hckt3 = circuit("example3™);
add(hckt3,[1 2],hC3)
setports(hckt3, [1 0],[2 O1)
disp(hC3)

capacitor: Capacitor element

Capacitance: 3.0000e-06
Name: *C3uf*

Terminals: {"p® "n"}
ParentNodes: [1 2]

ParentPath: “example3*

See Also

resistor on page 6-55 | inductor on page 6-30 | circuilt on page 6-26

6-25

6 Objects — Alphabetical List

6-26

circuit class

Circuit object

Syntax

cktobj = circuit

cktobj = circuit(cktname)

cktobj = circuit([eleml,elem2,...])

cktobj = circuit([eleml,elem2,..._],cktname)
cktobj = circuit(rfb)

cktobj = circuit(rfb,cktname)

Description

Use circuit class to build a circuit object which can contain elements like resistor,
capacitor, and inductor.

cktobj = circuitcreates a circuit object cktobj with default name unnamed.
cktobj = circuit(cktname) creates a circuit object cktobj with name of cktname.
cktobj = circuit([eleml,elem2, .. .]) creates a circuit object cktobj by

cascading the specified 2—port elements.

cktobj = circuit([eleml,elem2,...],cktname) creates a cascaded circuit object
cktobj with the name, cktname.

cktobj = circuit(rfb) creates a circuit object cktobj by cascading the elements in
the RF object, rfb.

cktobj = circuit(rfb,cktname) creates a circuit object cktobj by cascading the
elements in the RF object, rfb, using name, cktname.

Properties

Name — Object Name
unnamed (default) | character vector

circuit class

Name of circuit, specified as a character vector. Default name is unnamed. Two circuit
elements attached together or belonging to the same circuit cannot have the same name

ElementNames — Name of elements in the circuit
cell vector

Name of elements in the circuit, specified as a vector of cell vector. The possible elements
here are resistor, capacitor, inductor, and circuit.

Terminals — Names of terminals in the circuit
cell vector

Names of terminals in the circuit, specified as a cell vector. Use setterminals or
setports function to define the terminals. The terminals of the circuit are only
displayed once it is defined.

Ports — Names of ports in a circuit
character vector

Names of ports in a circuit specified as a character vector. Use setports function to
define the ports. The ports of the circuit are only displayed once it is defined.

Nodes — List of nodes defined in circuit
vector of integers

List of nodes defined in the circuit, specified as a vector of integers. These nodes are
created when a new element is attached to the circuit.

ParentPath — Full path of parent circuit
character vector

Full path of parent circuit, specified as a character vector. This path appears only once
the child circuit is added to the parent circuit.

ParentNodes — Nodes of parent circuit
vector of integers.

Nodes of parent circuit, specified as a vector of integers. This vector of integers is the

same length as the Terminals property. This property appears only after the child
circuit is added to the parent circuit.

6-27

6 Objects — Alphabetical List

Input Arguments

eleml,elem2... — 2-port RF elements
character vector

2-port RF elements, specified as a character vectors. The possible elements are amplifier,
modulator, rfelement, and, nport objects.

rfb — RF budget object
object handle

RF budget object, specified as a object handle.

Examples

Create Circuit with Elements and Terminals

Create a circuit called new_circuit. Add a resistor and capacitor to the ciruit. Set the
terminals and display the results.

hckt = circuit("new_circuitl®);

hCl= add(hckt,[1 2],capacitor(3e-9));
hR1 = add(hckt,[2 3],resistor(100));
setterminals (hckt,[1 3]);

disp(hckt)

circuit: Circuit element

ElementNames: {"C* "R"}
Nodes: [1 2 3]
Name: “"new _circuitl”
Terminals: {"tl" ~"t2"}

Create Circuit with Two Parallel Elements

Create a circuit called new_circuit. Add a capacitor and inductor parallel to the circuit.

hckt = circuit("new_circuit”);

hC = add(hckt,[1 2],capacitor(le-12));
hL = add(hckt,[1 2], inductor(le-9));
disp(hckt)

6-28

circuit class

circuit: Circuit element
ElementNames: {"C* ~"L"}

Nodes: [1 2]
Name: "new_circuit”

See Also

resistor on page 6-55 | capacitor on page 6-23 | inductor on page 6-30 |
nport | lcladder

6-29

6 Objects — Alphabetical List

inductor class

Inductor object

Syntax

lobj inductor(lvalue)
lobj = inductor(lvalue, Iname)

Description

Use inductor class to create an inductor object that you can add to an existing circuit.

p,Mﬂ

lobj = inductor(lvalue) creates a inductor object, lobj, with a inductance of
Ivalue and default name, L. lvalue must be a numeric positive scalar.

lobj = inductor(lvalue, Iname) creates a inductor object, lobj, with a inductance
of Ivalue and name Iname. Iname must be a character vector.

Properties

Inductance — Object value
scalar

Inductance, in henrys, of the inductor object.

Name — Object name
L (default) | character vector

6-30

inductor class

Name of inductor object, specified as a character vector. Two elements in the same circuit
cannot have the same name.

Terminals — Names of terminals of inductor object
cell vector

Names of the terminals of inductor object, specified as a cell vector These names are
always p and n.

ParentPath — Full path of the circuit to which the inductor object belongs
character vector

Full path of the circuit to which the inductor object belongs, specified as character vector.
This path appears only after the inductor is added to the circuit.

ParentNodes — Circuit nodes in the parent nodes connect to inductor terminals
vector of integers.

Circuit nodes in the parent nodes connect to inductor terminals, specified as a vector of
integers. This property appears only after the inductor is added to a circuit.

Examples

Create and Display Inductor

Create an inductor of 3e-9 henry and display the properties.

hL1 = inductor(3e-9);
disp(hLl)

inductor: Inductor element
Inductance: 3.0000e-09
Name: “L*
Terminals: {"p® "n"}
Create and Extract S-parameters of Inductor

Create an inductor object and extract the s-parameters of this inductor.

hL = inductor(3e-9,"L3nh");

6-31

6 Objects — Alphabetical List

hckt = circuit("example2®);
add(hckt,[1 2],hL)

setports (hckt, [1 0],[2 0D
freq = linspace (1e3,2e3,100);
S = sparameters(hckt,freq);
disp(S)

sparameters: S-parameters object

NumPorts: 2
Frequencies: [100x1 double]
Parameters: [2x2x100 double]
Impedance: 50

rfparam(obj,i,j) returns S-parameter Sij

Add Inductor to Circuit and Display Properties

Add an inductor to a circuit, display the parent path and parent nodes.

hL = inductor(3e-9,"L3n9");
hckt = circuit("example3”);
add(hckt,[1 2],hL)
setports(hckt, [1 0]1,[2 O1)
disp(hL)

inductor: Inductor element

Inductance: 3.0000e-09
Name: "L3n9*

Terminals: {"p® "n"}
ParentNodes: [1 2]

ParentPath: “example3*

See Also

capacitor on page 6-23 | resistor on page 6-55 | circuit on page 6-26

6-32

modulator class

modulator class

Modulator object

Syntax

mod = modulator
mod = modulator(Name,Value)
Description

mod = modulator creates a modulator object, mod, with default property values. A
modulator is a 2-port RF circuit object. You can use this element in the rfbudget object
and the circuit object.

mod = modulator(Name,Value) creates a modulator object with additional properties
specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in
any order as Namel, Valuel, ..., NameN, ValueN. Properties not specified retain their
default values.

Properties

"Name® — Name of modulator
"Modullator”® (default) | character vector

Name of modulator, specified as the comma-separated pair consisting of "Name" and a
character vector. All names must be valid MATLAB variable names.

Example: "Name*® , "mod "

"Gain" — Available power gain
O (default) | nonnegative scalar in dB

Available power gain, specified as the comma-separated pair consisting of "Gain® and a
nonnegative scalar in dB.

6-33

6 Objects — Alphabetical List

6-34

Example: "Gain®,10
"NF" — Noise figure

O (default) | real finite nonnegative scalar in dB

Noise figure, specified as the comma-separated pair consisting of *NF" and a real finite
nonnegative scalar in dB.
Example: "NF*",-10

"01P3" — Output third-order intercept
Inf (default) | scalar in dBm

Output third-order intercept, specified as the comma-separated pair consisting of "O1P3*
and a scalar in dBm
Example: "O1P3",10

"LO" — Local oscillator frequency
1e9 (default) | real finite positive scalar in Hz

Local oscillator frequency, specified as the comma-separated pair consisting of "LO" and
a real finite positive scalar in Hz.
Example: "LO" ,2e9

"ConverterType" — Type of modulator
"Up" (default) | "Down*®

Type of modulator, specified as the comma-separated pair consisting of
"ConverterType® and "Down* or "Up*
Example: "ConverterType®, "Up*

"Zin" — Input impedance
50 (default) | positive real part finite scalar in ohms

Input impedance, specified as the comma-separated pair consisting of *Zin" and a
positive real part finite scalar in ohms. You can also use a complex value with a positive
real part.

Example: "Zin",40

"Zout"™ — Output impedance
50 (default) | positive real part finite scalar in ohms

modulator class

Output impedance, specified as the comma-separated pair consisting of "Zout" and a
scalar in ohms. You can also use a complex value with a positive real part.

Example: "Zout" ,40

"NumPorts"™ — Number of ports
2 (default) | scalar integer

Number of ports, specified as the comma-separated pair consisting of *NumPorts"® and a
scalar integer.

Example: "NumPorts”® ,4

"Terminals”™ — Names of port terminals
{"pl+" "pl-"} (default) | cell vector

Names of port terminals, specified as the comma-separated pair consisting of

"Terminals” and a cell vector These names are always p and n for positive and
negative nodes.

Example: "Terminals®,{"pl+" "p2+" "pl-" "p2-"}

Examples

Modulator Element

Create a downconverter modulator with a local oscillator (LLO) frequency of 100 MHz.

modulator (" ConverterType®, "Down®, "L0O",100e6)

m

m =
modulator: Modulator element

Name: “"Modulator*®

Gain: O
NF: O
OIP3: Inf

LO: 100000000
ConverterType: "Down*
Zin: 50
Zout: 50
NumPorts: 2

6-35

6 Objects — Alphabetical List

6-36

Terminals: {"pl+® "p2+° “pl-" "p2-"}

Modulator Circuit

Create a modulator object with a gain of 4 dB and local oscillator (LLO) frequency of 2.9
GHz. Create another modulator object that is an upconvertor and has an output third-
order intercept (OIP3) of 13 dBm.

mod1l
mod2

modulator("Gain®,4,"L0",2e9);
modulator("0IP3",13, "ConverterType®,"Up”);

Build a 2-port circuit using the modulators.

c circuit([modl mod2])

CcC =
circuit: Circuit element
ElementNames: {"Modulator® “Modulator_1"}
Nodes: [0 1 2 3]
Name: “unnamed®

NumPorts: 2

Terminals: {"pl+" "p2+* "pl-" "p2-"}

RF Budget Analysis of Series of RF Elements
Create an amplifier with a gain of 4 dB.

a = amplifier("Gain-",4);

Create a modulator with an OIP3 of 13 dBm.
m = modulator("0IP3",13);

Create an nport using passive.s2p.

n = nport(“passive.s2p”);

Create an rf element with a gain of 10 dB.

modulator class

r = rfelement("Gain®,10);

Calculate the rf budget of a series of rf elements at an input frequency of 2.1 GHz, an
available input power of -30 dB, and a bandwidth of 10 MHz.

b rfbudget({a m r n},2.1e9,-30,10e6)

rfbudget with properties:

Elements: [1x4 rf.internal.rfbudget.Element]
InputFrequency: 2.1 GHz
AvailablelnputPower: -30 dBm
SignalBandwidth: 10 MHz
AutoUpdate: true

Analysis Results

OutputFrequency: (GHz) [2.1 3.1 3.1 3.1]
OutputPower: (dBm) [-26 -26 -16 -20.6]
TransducerGain: (dB) [4 4 14 9.4]
NF: (dB) [0 0 0 0.1392]

OIP3: (dBm) [Inf 13 23 18.4]

1IP3: (dBm) [InF 9 9 9]

SNR: (dB) [73.98 73.98 73.98 73.84]

Show the analysis in the RF Budget Analyzer app.

show(b)

6-37

6 Objects — Alphabetical List

4\ FF Budget Analyzer - untitled |E”E”E|
ANALYSIS 2 & & S ol =)
o T b & M @ &

Mewy Cpen Save Delete Amplifier Modulstor S-parameters Generic Export
-

- - -
FILE DELETE ADD ELEMENTS EXPORT a
| untitled |
System Parameters
Input frequency: (2.1 GHz | G 5115
. . 51151:
NF
Available input power: -30 dBm . 52152
. | P3 21522
Signal banchwicttc 10 MHZ = | Amplifier Modulator RFelement Sparams
Element Parameters Stage 1 2 3 4
Amplifier Gaind (dB) 4 0 10 -2.586
MF (dE) 1] 1] 1] 2.586
Mame: | Amplifier . OIP3 [dBrm) Inf 13 Inf Inf
Available povwer gain: |4 dB :
M Cascade 1 1.2 1.3 1.4
Moise figure: 0 dE Fout (GHz) 21 31 31 31
QIP3: Inf dBm Pout (dBm) -26 -26 -16 -20.6
. GainT (dE) 4 4 14 94
Input impedance: (S0 Ohm
MF (dE) 1] 1] 1] 013582
Output impedance: |50 Chm QIP3 (dBm) In 13 23 184
SMR (dE) 7385 7385 7385 7384

See Also

amplifier | rfelement | nport | rfbudget

Introduced in R2017a

6-38

nport class

nport class

Create linear n-port circuit element

Syntax

nport_obj = nport(filename)
nport_obj = nport(sparam _obj)
Description

The nport class creates an n-port object that can be added into an RF Toolbox circuit.
The n-port S-parameters define the n-port object.

nport_obj nport(filename) creates an n-port object from the specified fi lename.

nport_obj = nport(sparam_obj) creates an n-port object from an S-parameters data
object.

Input Arguments

filename — Touchstone data file
Chi’ll“é’lCtel" vector

Touchstone data file, specified as a character vector, that contains network parameter
data. i lename can be the name of a file on the MATLAB path or the full path to a file.
If the file contains data in any other type such as Y-parameters, Z-parameters, then the
data 1s converted to S-parameters.

Example: *.s2p

sparam_obj — S-parameters
network parameter object

S-parameters, specified as an RF Toolbox network parameter object. To create this type
of object, use the sparameters function.

6-39

6 Objects — Alphabetical List

6-40

Properties

NumPorts — Number of ports
scalar

Number of ports, specified as a scalar.

Example: 2

NetworkData — S-parameter data

scalar

S-parameter data, specified as a scalar. The linear S-parameter data defines the n-port
object.

Example: [1x1 sparameters]

Name — Name of n-port object

scalar handle

Name of n-port object, specified as a scalar handle.
Example: obj

Ports — Port names
cell vector |

Port names, stored as a cell vector. This property is a read only.

Example: {pl’ ‘p2’}

Terminals — Terminal names
cell vector

Terminal names, stored as a cell vector. There are two terminals per port. The positive
terminal names are listed first (‘p1+', 'p2+'...) followed by the negative terminal ('p1-',
'p2-'"...). This property is read only.

ParentNodes — Parent circuit nodes connected to n-port object terminals
vector of integers.

Parent circuit nodes connected to n-port object terminals, stored as a vector of integers.
ParentNodes is same length as Terminals. This property is read only and appears only
after you add the n-port data.

nport class

ParentPath — Full path of circuit to which n-port object belongs
character vector

Full path of the circuit to which the n-port object belongs, stored as character vector.
This property is read only and appear only after you add the n-port object is added to the
circuit.

Examples

Create N-port Object
Create and display N-port data object.

npass = nport(“passive.s2p”)

npass =
nport: N-port element

NetworkData: [1x1 sparameters]
Name: "Sparams*
NumPorts: 2
Terminals: {"pl+® "p2+*

p1-* "p2-7}

Add N-Port Object to Circuit
Add a N-port object to a circuit. Display the object.

nobj = nport(“passive.s2pT);
ckt = circuit("example®);
add(ckt,[1 2].nobj)
disp(nobj)

nport: N-port element

NetworkData: [1x1 sparameters]
Name: "Sparams*
NumPorts: 2
Terminals: {"pl+® "p2+° “pl-" "p2-"}
ParentNodes: [1 2 0 O]
ParentPath: “example®

6-41

6 Objects — Alphabetical List

See Also

capacitor on page 6-23 | inductor on page 6-30 | circuit on page 6-26 | resistor
on page 6-55

6-42

Icladder class

Icladder class

LC ladder object

Syntax

Icobj
Icobj

Icladder(top,1,c)
Icladder(top,I,c, Icnhame)

Description
Icladder class creates an LLC ladder object that you can add to an existing circuit.

Create filters and calculate s-parameters of filters using Icladder class. You can also
add the Icladder object to an existing circuit.

kA Y o —

Icobj = Icladder(top,l,c) creates an LLC ladder object, Icobj, with a topology,
top, inductor values, I, and capacitor values, c.

Icobj = Icladder(top,l,c, Icname) creates an L.C ladder object, Icobj, with a
name, lcname. Ilcname must be a character vector.

6-43

6 Objects — Alphabetical List

6-44

Properties

Topology — Topology type of the LC ladder

character vector
Topology type of the LC ladder, specified as a character vector:

+ "lowpasspi ": Low-pass pi filter

+ "lowpasstee”: Low-pass tee filter

* "highpasspi ": High-pass pi filter

+ "highpasstee”: High-pass tee filter
* "bandpasspi ": Band-pass pi filter

* "bandpasstee”: Band-pass tee filter
* "bandstoppi": Band-stop pi filter

* "bandstoptee”: Band-stop tee filter

Set the topology type in the top argument of the syntax.

Example: * lowpasspi *

Inductances — Inductor values in LC ladder
numeric scalar or vector

Inductor values in LC ladder, specified as a numeric scalar or vector. Set the inductor
value in the | argument of the syntax.

Example: 3.18e-8

Capacitances — Capacitor values in LC ladder

numeric scalar or vector

Capacitor values in LL.C ladder, specified as a numeric scalar or vector. Set the capacitor
value in the ¢ argument of the syntax.

Example: [6.37e-12 6.37e-12]

Name — Name of LC ladder object
"IcFilt" (default) | character vector

Name of L.C ladder object, specified as a character vector. Set the name of the L.C ladder
in Icname argument of the syntax.

Icladder class

NumPorts — Number of ports in LC ladder object
scalar of value 2

Number of ports in L.C ladder object. specified as a scalar. This value is always 2.

Terminals — Terminal names of LC ladder obiject
{'p1+' 'p2+' 'p1-''p2-'} | cell vector

Terminal names of LLC ladder object, specified as the cell vector, {"pl+" "p2+* "pl--
"p2-"1}. An L.C ladder object always has four terminals: two terminals associated with
the first port (*pl+" and "pl-") and two terminals associated with the second port
("p2+° and "p2-"7).

ParentNodes — Parent circuit nodes connected to LC ladder object terminals
vector of integers

Parent circuit nodes connected to L.C ladder object terminals, specified as a vector of
integers. This property appears only after the LC ladder object is added to a circuit.

ParentPath — Full path of the circuit to which the LC ladder object belongs
character vector

Full path of the circuit to which the LC ladder object belongs, specified as character
vector. This path appears only after the inductor is added to the circuit.

Input Arguments
top — Topology type of the LC ladder

character vector
Topology type of the L.C ladder, specified as a character vector:

+ "lowpasspi ": Low-pass pi filter

+ "lowpasstee”: Low-pass tee filter

* "highpasspi ": High-pass pi filter

+ "highpasstee”: High-pass tee filter
+ "bandpasspi ": Band-pass pi filter

+ "bandpasstee”: Band-pass tee filter
* "bandstoppi ": Band-stop pi filter

+ "bandstoptee”: Band-stop tee filter

6-45

6 Objects — Alphabetical List

6-46

Set the topology type in the top argument of the syntax.

Example: " lowpasspi "

I — Inductor values in LC ladder
numeric S(,'a]‘dl" or vector

Inductor values in LLC ladder, specified as a numeric scalar or vector. Set the inductor

value in the I argument of the syntax.

Example: 3.18e-8

¢ — Capacitor values in LC ladder
numeric scalar or vector

Capacitor values in LC ladder, specified as a numeric scalar or vector. Set the capacitor
value in the ¢ argument of the syntax.

Example: [6.37e-12 6.37e-12]

Icname — Name of LC ladder object
"IcFilt” (default) | character vector

Name of LC ladder object, specified as a character vector. Set the name of the LC ladder
in Icname argument of the syntax.

Examples

Create Low-Pass Pi LC Ladder Object and Plot S-Parameters

Create a low-pass pi lc ladder object with inductor value, 3.18e-8 and capacitor value,
6.37e12. Calculate and plot the s-parameters.

L = 3.18e-8;
C [6.37e-12 6.37e-12];
Ipp = Icladder (" lowpasspi”®,L,C)

freq = 0:1e6:1e9;
S = sparameters(lpp,freq);
rfplot(S)

Ipp =

Icladder class

Magnitude (dB)

Icladder: LC Ladder element
Topology: "lowpasspi”
Inductances: 3.1800e-08
Capacitances: [6.3700e-12 6.3700e-12]
Name: “lIcFilt”
NumPorts: 2
Terminals: {"pl+" "p2+" "pl-" "p2-"}
0 T T T ___I____.—l—-— T T T
,,x-""f- -~ dEi[Sﬁ}
g dBiS,.}
50k 217
dE[S12}
dB[Szz]'
-100 7
-150 7
=200 7
=250 7
—EDD i i i i i i i i
0 1 2 3 4 5 G 7 9 10
Frequency (Hz) « 108
See Also

capacitor on page 6-23 | inductor on page 6-55 | circuit on page 6-26

6-47

6 Objects — Alphabetical List

Introduced in R2015b

6-48

rfelement class

rfelement class

Generic RF element object

Syntax

rfel = rfelement
rfel = rfelement(Name,Value)
Description

rfel = rfelement creates a generic rf element object, rfel, with default property
values. An RF element is a 2—port RF circuit object. You can use this element in the
rfbudget object and the circuit object.

rfel = rfelement(Name,Value) creates a generic rf element with additional
properties specified by one or more name-value pair arguments. Name is the property
name and Value is the corresponding value. You can specify several name-value pair
arguments in any order as Namel, Valuel, . . ., NameN, ValueN. Properties not specified
retain their default values.

Properties

"Name® — Name given to identify rf element
"RFelement” (default) | character vector

Name given to identify rf element, specified as the comma-separated pair consisting of
"Name" and a character vector. All names must be valid MATLAB variable names.

Example: "Name®, "rfel "

"Gain" — Available power gain
0 (default) | scalar in dB

Available power gain, specified as the comma-separated pair consisting of "Gain® and a
scalar in dB.

6-49

6 Objects — Alphabetical List

6-50

Example: "Gain®,10

"NF" — Noise figure
O (default) | real finite nonnegative scalar in dB

Noise figure, specified as the comma-separated pair consisting of *NF" and a real finite
nonnegative scalar dB.
Example: "NF*",-10

"01P3" — Output third-order intercept
Inf (default) | scalar in dBm

Output third-order intercept, specified as the comma-separated pair consisting of "O1P3*
and a scalar in dBm
Example: "O1P3",10

"Zin" — Input impedance
50 (default) | positive real part finite scalar in Ohms

Input impedance, specified as the comma-separated pair consisting of "Zin" and a
positive real part finite scalar in Ohms. You can also use a complex value with a positive
real part.

Example: "Zin",40

"Zout" — Output impedance
50 (default) | positive real part finite scalar in Ohms

Output impedance, specified as the comma-separated pair consisting of "Zout" and a
scalar in Ohms. You can also use a complex value with a positive real part.
Example: "Zout" ,40

"NumPorts™ — Number of ports
2 (default) | scalar integer

Number of ports, specified as the comma-separated pair consisting of *NumPorts® and a
scalar integer.
Example: "NumPorts”® ,4

"Terminals”™ — Names of port terminals
{"pl+" "p2+° "pl-" "p2-"} (default) | cell vector

rfelement class

Names of port terminals, specified as the comma-separated pair consisting of
"Terminals” and a cell vector These names are always p and n for positive and
negative nodes.

Example: "Terminals®,{"pl+" "p2+" "pl-" "p2-"}

Examples

RF Element

Create an rfelement object with a gain of 10 dB, noise figure of 3 dB, and OIP3 (output
third-order intercept) of 2 dBm.

r rfelement("Gain®,10, "NF",3,"0IP3",2)

r' =
rfelement: RF element

Name: "RFelement”

Gain: 10

NF: 3
OIP3: 2
Zin: 50
Zout: 50

NumPorts: 2
Terminals: {"pl+" "p2+*

RF Element Circuit

Create an rf element with a gain of 4 dB. Create another rf element with an output third-
order intercept(OIP3) of 3 dBm.

rfell
rfel2

rfelement("Gain”,4);
rfelement("0I1P3",13);

Build a 2-port circuit using the above defined rf elements.

c circuit([rfell rfel2])

6-51

6 Objects — Alphabetical List

circuit: Circuit element
ElementNames: {"RFelement® “RFelement_ 1"}

Nodes: [0 1 2 3]

Name: “unnamed”

NumPorts: 2
Terminals: {"pl+® “p2+*

pl-* "p2-T"}

RF Budget Analysis of Series of RF Elements
Create an amplifier with a gain of 4 dB.

a = amplifier("Gain",4);

Create a modulator with an OIP3 of 13 dBm.
m = modulator("0OIP3",13);

Create an nport using passive.s2p.

n = nport(“passive.s2p”);

Create an rf element with a gain of 10 dB.

r = rfelement("Gain”,10);

Calculate the rf budget of a series of rf elements at an input frequency of 2.1 GHz, an
available input power of -30 dB, and a bandwidth of 10 MHz.

b

rfbudget({a m r n},2.1e9,-30,10e6)

rfbudget with properties:

Elements: [1x4 rf.internal.rfbudget.Element]
InputFrequency: 2.1 GHz
AvailablelnputPower: -30 dBm
SignalBandwidth: 10 MHz
AutoUpdate: true

Analysis Results
OutputFrequency: (GHz) [2.1 3.1 3.1 3.1]

6-52

rfelement class

OutputPower: (dBm)
TransducerGain: (dB)
NF: (dB)

OIP3: (dBm)

11P3: (dBm)
SNR: (dB)

[-26 -26
[4 4
L 0 0
[InF 13
[InF 9
[73.98 73.98

Show the analysis in the RF Budget Analyzer app.

show(b)

-16
14

23

73.98

-20.6]
9.4]
0.1392]
18.4]
9]
73.84]

4\ RF Budget Analyzer - untitled

ANALY SIS

[=[=][=]

BEialacD0

T oEd T B & 4
Mewy Cpen Save Delete Amplifier Modulstor S-parameters Generic Export
- - - -
FILE DELETE ADD ELBWENTS EXPORT a
| untitled |
System Parameters
Input frequency: (2.1 GHz | G 5115
211212
NF
Avsilable input pover: |-30 dBm IP3 521522
Signal banchwicttc 10 MHZ - Amplifier Modulator RFelement Sparams
Element Parameters Stage 1 3 4
Amplifier Gaind (dB) 4 0 10 -2.586
MF (dE) 1] 1] 1] 2.586
Mame: | Amplifier . OIP3 [dBrm) Inf 13 Inf Inf
Available povwer gain: |4 dB :
M Cascade 1 1.2 1.3 1.4
Moise figure: 0 dE Fout (GHz) 21 31 31 31
QIP3: Inf dBm Pout (dBm) -26 -26 -16 -20.6
. GainT (dE) 4 4 14 94
Input impedance: (S0 Ohm
MF (dE) 1] 1] 1] 013582
Output impedance: |50 Chm OIP3 (dEm) Int 13 23 184
SMR (dE) 7385 7385 7385 7384

See Also

amplifier | modulator | nport | rfbudget

6-53

6 Objects — Alphabetical List

Introduced in R2017a

6-54

resistor class

resistor class

Resistor object

Syntax

robj = resistor(rvalue)
robj = resistor(rvalue,rname)

Description

Use the resistor class to create a resistor object that you can add to an existing circuit.

o AN

R

robj = resistor(rvalue) creates a resistor object, robj, with a resistance of rvalue
and default name, R. rvalue must be a numeric non-negative scalar.

robj = resistor(rvalue,rname) creates a resistor object, robj, with a resistance of
rvalue and name rname. rname must be a character vector.

Properties

Resistance — object value
scalar

Resistance, in ohms, of the resistor object.
Name — Object name

R (default) | character vector

6-55

6 Objects — Alphabetical List

6-56

Name of resistor object, specified as a character vector. Two elements in the same circuit
cannot have the same name.

Terminals — Names of terminals of resistor object
cell vector

Names of the terminals of resistor object, specified as a cell vector These names are
always p and n.

ParentPath — Full path of the circuit to which the resistor object belongs
character vector

Full path of the circuit to which the resistor object belongs, specified as character vector.
This path appears only after the resistor is added to the circuit.

ParentNodes — Circuit nodes in the parent nodes connect to resistor terminals
vector of integers.

Circuit nodes in the parent nodes connect to resistor terminals, specified as a vector of
integers. This property appears only after the resistor is added to a circuit.

Examples

Create Resistor and Display Properties

Create a resistor of resistance 100 ohms and display its properties.

hR1 = resistor(100);
disp(hR1)

resistor: Resistor element
Resistance: 100
Name: “R*
Terminals: {"p® "n"}
Create and Extract S-parameters of Resistor

Create an resistor object and extract the s-parameters of this resistor.

hR = resistor(50, "R50%);

resistor class

hckt = circuit("example2®);
add(hckt,[1 2],hR)

setports (hckt, [1 0],[2 0D
freq = linspace (1e3,2e3,100);
S = sparameters(hckt,freq);
disp(S)

sparameters: S-parameters object

NumPorts: 2
Frequencies: [100x1 double]
Parameters: [2x2x100 double]
Impedance: 50

rfparam(obj,i,j) returns S-parameter Sij

Add Resistor to Circuit and Display Properties

Add a resistor to a circuit, display the parent path and parent nodes.

hR = resistor(150, "R150");

hckt = circuit(“resistorcircuit®);
add(hckt,[1 2],hR)

setports(hckt, [1 0]1,[2 O1)
disp(hR)

resistor: Resistor element

Resistance: 150
Name: *"R150*
Terminals: {"p® "n"}
ParentNodes: [1 2]
ParentPath: "resistorcircuit”

See Also

capacitor on page 6-23 | inductor on page 6-30 | circuit on page 6-26

6-57

6 Objects — Alphabetical List

6-58

rfchain class

Create rfchain object

Syntax

obj = rfchain(Q)

obj = rfchain(g, nf, 03, "Name®, nm)

obj = rfchain(g, nf, "11P3", i3, “Name", nm)
obj = rfchain(Name,Value)

Description

obj = rfchain() creates an RF chain object obj having zero stages. To add stages to
the RF chain, use addstage method.

obj = rfchain(g, nf, 03, "Name®, nm) creates an RF chain object obj having N
stages. The gain g, noise figure n¥ and the OIP3 03 are vectors of length N . The name
nm is a cell array of length N .

obj = rfchain(g, nf, "1IP3", i3, "Name", nm) creates an RF chain object
having N stages, specifying an IIP3 for each stage, instead of an OIP3.

obj = rfchain(Name,Value) specifies one or more properties using name-value pairs.

Properties

Numstages — Number of stages
scalar

Number of stages in an RF chain, returned as a scalar.
Data Types: double

Name — Name of each stage
character vector

rfchain class

Name of each stage of an RF chain, returned as a character vector. This will always be a
name-value pair.

Data Types: char

Gain — Gain of each stage

vector

Gain, in dB, of each stage in an RF chain, returned as a vector.

Data Types: double

NoiseFigure — Noise figure of each stage

vector

Noise figure, in dB, of each stage in an RF chain, returned as a vector.
Data Types: double

01P3 — Output-referred third-order intercept
vector

Output-referred third-order intercept, in dB, of each stage in an RF chain, returned as a
vector.
Data Types: double

11P3 — Input-referred third-order intercept
vector

Input-referred third-order intercept, in dB, of each stage in an RF chain, returned as a
vector.

Data Types: double

Methods

addstage Add stage to RF chain object
setstage Update RF Chain stage
cumgain Cascaded gain of the RF chain object

6-59

6 Objects — Alphabetical List

6-60

cumnoisefig Cascaded noise figure of the RF chain
object

cumoip3 Cascaded output-referred third-order
intercept of the RF chain object

cumiip3 Cascaded input-referred third-order
intercept of the RF chain object

plot Plot RF chain cascaded analysis results

worksheet RF chain cascaded analysis table

Examples

Create RF Chain Object, Add Stages, and View Results

Create an RF chain object.

rfch = rfchain;

Add stage 1 and stage 2 with gain, noise figure, oip3.

addstage(rfch, 21, 15, 30, "Name®, "ampl®);
addstage(rfch, -5, 6, Inf, "Name®, "filtl");

Add stage 3 and stage 4 with gain, noise figure, iip3.

addstage(rfch, 7, 5, "11P3", 10, "Name®", "Inal®);
addstage(rfch, 12, 14, "11P3", 20, "Name®, "amp2);

Calculate the gain, noise figure, oip3, and 1ip3 of each stage.

g = cumgain(rfch);

nf = cumnoisefig(rfch);
oip3val = cumoip3(rfch);
iip3val cumiip3(rfch);

View the results on a table and plot it.

worksheet(rfch)
figure
plot(rfch)

rfchain class

ampl filtl Inal amp2
Stage Gain 21 -5 7 12
Stage Moise Figure 15 6] 14
Stage OIP3 30 It 17 32
Stage IP3] Irvf 10 20
Cascaded Gain 21 16 23 35
Cascaded Moise Figure 13 1:3.0033 13.mar 150272
Cascaded QIP3 30 23 16.5645 27140
Cascaded IP3 9.0000 9.00a0 -6.1352 -7.5549

I

6-61

6 Objects — Alphabetical List

Cascade Analysis
35 . .

30 - 7

an F—— ~ f .

dB

—s— Gain
= Muaoise Figure
QIP3

—&— |IP3 —

amp1
filt1
Inal1 r

ampz

Create RF Chain Adding Stage-By-Stage Values
Assign three stage-by-stage values of gain, noise figure, OIP3 and stage names.

g = [11 -3 7];

nf = [25 3 5];
03 = [30 Inf 10];
nm = {"ampl”,"filtl","Inal"};

6-62

Create an RF chain object.

rfch = rfchain(g,nf,03, "Name",nm);

View results in a worksheet.

rfchain class

worksheet(rfch)
ampl filtl Inal

Stage Gain 11 -3 7

Stage Moise Figure 25 3 5

Stage OIP3 a0 It 10

Stage IP3 19 It 3

Cascaded Gain 11 8 15
Cascaded Moise Figure 23 25,0011 250058
Cascaded OIP3 a0 r 99527
Cascaded IP3 14 14 -50173

6-63

6 Objects — Alphabetical List

6-64

rfckt.amplifier class

Package: rfckt

RF amplifier

Syntax

h
h

rfckt.amplifier
rfckt.amplifier("Propertyl” ,valuel, "Property2* ,value2,...)

Description

Use the ampliFfier class to represent RF amplifiers that are characterized by network
parameters, noise data, and nonlinearity data.

h = rfckt.amplifier returns an amplifier circuit object whose properties all have
their default values.

h = rfckt.amplifier("Propertyl” ,valuel, "Property2” ,value2, ...) returns
a circuit object, h, based on the specified properties. Properties that you do not specify
retain their default values.

Use the read method to read the amplifier data from a data file in one of the following
formats:

* Touchstone
+ Agilent P2D
+ Agilent S2D
- AMP

See for information about the .amp format.

Note: If you set NonLinearData using rfdata. ip3 or rfdata.power, then the
property is converted from scalar OIP3 format to the format of rfdata. ip3 or
rfdata.power.

rickt.amplifier class

Properties

"AnalyzedResult”™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-67.

Data Types: function_handle

"IntpType" — Interpolation method used in rfckt.amplifier
"Linear” (default) | "Spline” | "Cubic”

Interpolation method used in rfckt.amplifier, specified as a comma separated pair
consisting of " IntpType" and one of the following values:

Method Description

Linear Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"NetworkData" — Network parameter data
rfdata.network object

Network parameter data, specified as a comma-separated pair consisting of
"NetworkData" and rfdata.network object.

Data Types: function_handle

"NoiseData" — Noise information
Scalar noise figure in decibels | rfdata.noise object | rfdata.nf object

6-65

6 Objects — Alphabetical List

Noise information, specified as a comma-separated pair consisting of *NoiseData" and
one of the following:

+ Scalar noise figure in dB
+ rfdata.noise object
+ rfdata.nf object

Data Types: double | function_handle

"NonlinearityData” — Nonlinearity information
Scalar OIP3 in dB | rfdata.power object | rfdata. ip3 object

Noise information, specified as a comma-separated pair consisting of
"NonlinearityData” and one of the following:

+ Scalar OIP3 in dB
+ rfdata.power object
+ rfdata. ip3 object

Data Types: double | function_handle

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read only property and the default value is 2.

Data Types: double

Methods

Examples

Create RF Circuit Amplifier

Create an Amplifier using rfckt.amplifier object.

amp = rfckt.amplifier("IntpType”, “cubic™)

6-66

rickt.amplifier class

amp =
rfckt_amplifier with properties:

NoiseData: [1x1 rfdata.noise]
NonlinearData: [1x1 rfdata.power]
IntpType: “Cubic”
NetworkData: [1x1 rfdata.network]
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
Name: “Amplifier”

Algorithms

The analyze method computes the AnalyzedResult property using the data stored in
the rfckt.amplifier object properties as follows:

* The analyze method uses the data stored in the "NoiseData" property of the
rfckt.amplifier object to calculate the noise figure.

* The analyze method uses the data stored in the "NonlinearData" property of the
rfckt.amplifier object to calculate OIP3.

If power data exists in the "NonlinearData" property, the block extracts the AM/
AM and AM/PM nonlinearities from the power data.

If the "NonlinearData" property contains only IP3 data, the method computes and
adds the nonlinearity by:

1 Using the third-order input intercept point value in dBm to compute the factor, f,
that scales the input signal before the amplifier object applies the nonlinearity:

%
Famiam @ =u—-—

2 Computing the scaled input signal by multiplying the amplifier input signal by f.
3 Limiting the scaled input signal to a maximum value of 1.

4 Applying an AM/AM conversion to the amplifier gain, according to the following
cubic polynomial equation:

6-67

6 Objects — Alphabetical List

6-68

.3
Famiam @ =u-—

where u is the magnitude of the scaled input signal, which is a unitless
normalized input voltage.

The analyze method uses the data stored in the "NetworkData" property of the
rfckt.amplifier object to calculate the group delay values of the amplifier at the
frequencies specified in freq, as described in the analyze reference page.

The analyze method uses the data stored in the "NetworkData" property of the
rfckt.amplifier object to calculate the S-parameter values of the amplifier at the
frequencies specified in freq. If the "NetworkData" property contains network Y-

or Z-parameters, the analyze method first converts the parameters to S-parameters.
Using the interpolation method you specify with the " IntpType” property, the
analyze method interpolates the S-parameter values to determine their values at the
specified frequencies.

Specifically, the analyze method orders the S-parameters according to the ascending
order of their frequencies, f,. It then interpolates the S-parameters, using the
MATLAB interpl function. For example, the curve in the following diagram
illustrates the result of interpolating the S;; parameters at five different frequencies.

Interpolated S, parameter values

, 4/‘7 Original S,, parameter values

f, fy fy fs fy<—— Frequencies in ascending
order of magnitude
min) (fmax)

For more information, see “One-Dimensional Interpolation” and the interpl
reference page in the MATLAB documentation.

rickt.amplifier class

As shown in the preceding diagram, the analyze method uses the parameter values
at fnin, the minimum input frequency, for all frequencies smaller than f,,;,. It uses the
parameters values at f,,,, the maximum input frequency, for all frequencies greater
than f,,... In both cases, the results may not be accurate, so you need to specify
network parameter values over a range of frequencies that is wide enough to account
for the amplifier behavior.

References

EIA/IBIS Open Forum, Touchstone File Format Specification, Rev. 1.1, 2002 (https://
ibis.org/connector/touchstone_specll.pdf).

See Also

rfckt.datafile on page 6-90 | rfckt.mixer on page 6-141 | rfckt.passive
on page 6-161 | rfdata.data on page 6-205 | rfdata. ip3 on page 6-210 |
rfdata.network on page 6-215 | rfdata.nf on page 6-218 | rfdata.noise on
page 6-220 | rfdata.power on page 6-223

6-69

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

6 Objects — Alphabetical List

6-70

rfckt.cascade class

Package: rfckt

Cascaded network

Syntax

h
h

rfckt.cascade
rfckt.cascade("Propertyl- ,valuel, "Property2” ,value2,...)

Description

Use the cascade class to represent cascaded networks of RF objects that are
characterized by the components that make up the network. The following figure shows
the configuration of a pair of cascaded networks.

{(— —(2)
@.—nz 4 a|z 4n—.®

h = rfckt.cascade returns a cascaded network object whose properties all have their
default values.

h = rfckt.cascade("Propertyl”,valuel, "Property2” ,value2, ...) returns
a cascaded network object, h, based on the specified properties. Properties you do not
specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

rfckt.cascade class

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-72.

Data Types: function_handle

Ckts — Circuit objects in network
cell array of object handles

Circuit objects in network, specified as a comma separated pair consisting of "CKkts*”
and a cell array of object handles. All circuits must be 2-port. By default, this property is
empty.

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double

Methods

Examples

Create RF Circuit Cacscade Network

Create a cascade network using rfckt.cascade with amplifier and transmission lines as
elements.

amp = rfckt.amplifier("IntpType®, “cubic™);
t~x1l = rfckt.txline;
t™~x2 = rfckt.txline;

6-71

6 Objects — Alphabetical List

6-72

casccircuit = rfckt.cascade("Ckts”",{tx1l,amp,tx2})

casccircuit =

rfckt.cascade with properties:

Ckts:

nPort:
AnalyzedResult:
Name:

Algorithms

{1x3 cell}
2

[

"Cascaded Network*

The analyze method computes the AnalyzedResult property using the data stored in
the Ckts property as follows:

* The analyze method starts calculating the ABCD-parameters of the cascaded
network by converting each component network's parameters to an ABCD-parameters
matrix. The figure shows a cascaded network consisting of two 2-port networks, each
represented by its ABCD matrix.

The analyze method then calculates the ABCD-parameter matrix for the cascaded
network by calculating the product of the ABCD matrices of the individual networks.

The following figure shows a cascaded network consisting of two 2-port networks,
each represented by its ABCD-parameters.

e

B

The following equation illustrates calculations of the ABCD-parameters for two 2-port

networks.

B |:| mr Bv DDAM BI

B? o o pHe Dt

rfckt.cascade class

Finally, analyze converts the ABCD-parameters of the cascaded network to S-
parameters at the frequencies specified in the analyze input argument freq.

The analyze method calculates the noise figure for an N-element cascade. First, the
method calculates noise correlation matrices C,’ and C,”, corresponding to the first
two matrices in the cascade, using the following equation:

0 NF_. -1 ol
R “min "2 _R Y,
Cya —okTD . 1” 2 ; e
in ~ C
a% - RnYopt Rn |Yopt| E

where K is Boltzmann's constant, and T is the noise temperature in Kelvin.

The method combines C4' and C4”into a single correlation matrix C,4 using the
equation

_ . o BO,OA BT
sl pifaf ot

By applying this equation recursively, the method obtains a noise correlation matrix
for the entire cascade. The method then calculates the noise factor, F, from the noise
correlation matrix of as follows:

2'Cyz
2kTRe{Zg}
010

0 .0
&s B

=1+

Z =

In the two preceding equations, Zg is the nominal impedance, which is 50 ohms, and

2" is the Hermitian conjugation of z.

The analyze method calculates the output power at the third-order intercept point
(OIP3) for an N-element cascade using the following equation:

6-73

6 Objects — Alphabetical List

1
1 + 1 +...+ 1
OIP3,N GN m)II)3,N—1 GN mN_l .. BGQ [OIP3J

OIP, =

where G, is the gain of the nth element of the cascade and OIP; y is the OIP; of the n'®
element.

* The analyze method uses the cascaded S-parameters to calculate the group delay
values at the frequencies specified in the analyze input argument freq, as described
in the analyze reference page.

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice Hall,
2000.

See Also

rfckt._hybrid on page 6-98 | rfckt.hybridg on page 6-102 |
rfckt._parallel on page 6-148 | rfckt.series on page 6-172

6-74

rfckt.coaxial class

rfckt.coaxial class

Package: rfckt

Coaxial transmission line

Syntax

h = rfckt.coaxial
h = rfckt.coaxial("Propertyl”,valuel, "Property2” ,value2,...)

Description

Use the coaxial class to represent coaxial transmission lines that are characterized by
line dimensions, stub type, and termination.

A coaxial transmission line is shown in cross-section in the following figure. Its physical
characteristics include the radius of the inner conductor of the coaxial transmission line
a, and the radius of the outer conductor b.

Inner canductar

Dielectric

Duter conductar

b

h = rfckt.coaxial returns a coaxial transmission line object whose properties are set
to their default values.

h = rfckt.coaxial("Propertyl-”,valuel, "Property2”,value2,...) returns a
coaxial transmission line object, h, with the specified properties. Properties that you do
not specify retain their default values.

6-75

6 Objects — Alphabetical List

6-76

Properties

"AnalyzedResult” — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-79.

Data Types: function_handle

"EpsilonR™ — Relative permittivity of dielectric
scalar

Relative permittivity of dielectric, specified as a comma separated pair consisting of
"EpsilonR" and a scalar. The relative permittivity is the ratio of permittivity of the

dielectric, € , to the permittivity in free space, &, . The default value is2.3.
Data Types: double

"InnerRadius” — Inner conductor radius
scalar in meters

Inner conductor radius, specified as a comma separated pair consisting of
"InnerRadius” and a scalar in meters. The default value is 7.25e-4.

Data Types: double

"LineLength” — Physical length of transmission line

scalar in meters

Physical length of transmission line, specified as a comma separated pair consisting of
"LineLength” and a scalar in meters. The default value is 0.01.

Data Types: double

"LossTangent" — Tangent of loss angle of dielectric

scalar

Tangent of loss angle of dielectric, specified as a comma separated pair consisting of
"LossTangent™ and a scalar. The default value is O.

Data Types: double

rfckt.coaxial class

"MUR" — Relative permeability of dielectric
scalar

Relative permeability of dielectric, specified as a comma separated pair consisting of
"MUR™ and a scalar. The ratio of permeability of dielectric, i, to the permeability in free

space, Uy . The default value is 1.
Data Types: double

"Name" — Object name
"Coaxial Transmission Line" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name*® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer.

Data Types: double

*OuterRadius”™ — Outer conductor radius
scalar in meters

Outer conductor radius, specified as a comma separated pair consisting of
"OuterRadius” and a scalar in meters. The default value is 0.0026.
Data Types: double

"SigmaCond"™ — Conductor conductivity
scalar in Siemens per meter

Conductor conductivity, specified as a comma separated pair consisting of *SigmaCond*”
and a scalar in Siemens per meter (S/m). The default value is Inf.

Data Types: double

"StubMode™ — Type of stub
"NotaStub®™ | "Series” | "Shunt”

6-77

6 Objects — Alphabetical List

6-78

Type of stub, specified as a comma separated pair consisting of *StubMode® and one of
the following values: "NotaStub”, "Series”, "Shunt”.

Data Types: double

"StubMode™ — Type of stub
"NotaStub” (default) | "Series” | "Shunt*”

Type of stub, specified as a comma separated pair consisting of *StubMode® and one of
the following values: "NotaStub”, "Series”, "Shunt”.

Data Types: double

"*Termination® — Stub transmission line termination
"NotApplicable® (default) | "Open® | "Short*

Stub transmission line termination, specified as a comma separated pair consisting of
"Termination® and one of the following values: "NotaStub*®, "Series”, "Shunt”.

Data Types: double
Methods

Examples

Create Coaxial Transmission Line

Create a coaxial transmission line with 0.0045 meters outer radius using rfckt.coaxial.

txl=rfckt.coaxial ("OuterRadius”,0.0045)

t>~1l =

rfckt.coaxial with properties:

OuterRadius: 0.0045
InnerRadius: 7.2500e-04
MuR: 1
EpsilonR: 2.3000

LossTangent: O

rfckt.coaxial class

SigmaCond: Inf
LineLength: 0.0100
StubMode: “"NotAStub®
Termination: “NotApplicable*
nPort: 2
AnalyzedResult: []
Name: "Coaxial Transmission Line*

Algorithms

The analyze method treats the transmission line as a 2-port linear network. It computes
the AnalyzedResul t property of a stub or as a stubless line using the data stored in the
rfckt.coaxial object properties as follows:

If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The anallyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

N ok | okd
2
Zy * (ok efkd)
B=
2
. okd _ gkd
2%,
kd , -kd
D= e +e
2

Zo and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed in
terms of the resistance (R), inductance (L), conductance (G), and capacitance (C) per
unit length (meters) as follows:

6-79

6 Objects — Alphabetical List

7 - R+ j21¢fL
0 T\l A~ . co—rr
G+ j2nfC

k =k, + jk =/(R +j21¥L)G +j21FC)

where
_ 1 mil +1 O
277'-O-cond5(:ond E bH
_ M OO
L="1n
2r EEH
G = 2nwe’

b
Fu

2re

T Db0
H

In these equations:

6-80

a is the radius of the inner conductor.

b is the radius of the outer conductor.
Ocona 18 the conductivity in the conductor.
1 is the permeability of the dielectric.

¢ is the permittivity of the dielectric.

£"1s the imaginary part of g, £” = gye,tan 6, where:

* go1s the permittivity of free space.

* &,1s the Epsi lonR property value.

* tan § is the LossTangent property value.

Ocona 18 the skin depth of the conductor, which the method calculates as
1/ rnfuc

cond *

f1s a vector of modeling frequencies determined by the Outport block.

rfckt.coaxial class

If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt”, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

[=]
3
[=]
[=]
3
[=]

[«]
_ml
k- |

[«]

[«]
"“J,
o

[«]

Z;, is the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

When you set the StubMode property to "Series”, the 2-port network consists of a
series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o & o o & o
z:'n | z:'n |

L¥ o o o

Z;n 1s the input impedance of the series circuit. The ABCD-parameters for the series

tub lculated
Stub are calculated as 6_81

6 Objects — Alphabetical List

Saw»>
Lo

References

Pozar, David M. Microwave Engineering, John Wiley & Sons, Inc., 2005.

See Also

rfckt.cpw on page 6-83 | rfckt.microstrip on page 6-134 |
rfckt.parallelplate on page 6-153 | rfckt_rlcgline on page 6-165 |
rfckt.twowire on page 6-189 | rfckt.txline on page 6-197

6-82

rfckt.cpw class

rfckt.cpw class

Package: rfckt

Coplanar waveguide transmission line

Syntax

h = rfckt.cpw
h = rfckt.cpw("Propertyl®,valuel, "Property2” ,value2,...)

Description

Use the cpw class to represent coplanar waveguide transmission lines that are
characterized by line dimensions, stub type, and termination.

A coplanar waveguide transmission line is shown in cross-section in the following figure.
Its physical characteristics include the conductor width (w), the conductor thickness (),
the slot width (s), the substrate height (d), and the permittivity constant (g).

vl
L T <

h

h = rfckt.cpw returns a coplanar waveguide transmission line object whose properties
are set to their default values.

h = rfckt.cpw("Propertyl-,valuel, "Property2”,value2,...) returns a
coplanar waveguide transmission line object, h, with the specified properties. Properties
that you do not specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

6-83

6 Objects — Alphabetical List

6-84

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-87.

Data Types: function_handle

ConductorWidth® — Physical width of conductor
scalar in meters

Physical width of conductor, specified as a comma separated pair consisting of
"ConductorWidth” and a scalar in meters. By default, the value is 0.6e-4.

Data Types: double

"EpsilonR" — Relative permittivity of dielectric
scalar

Relative permittivity of dielectric, specified as a comma separated pair consisting of
"EpsilonR™ and a scalar. The relative permittivity is the ratio of permittivity of the

dielectric, €, to the permittivity in free space, &, . By default, the value is 9.8.
Data Types: double

"Height" — Dielectric thickness or physical height of conductor
scalar in meters

Dielectric thickness or physical height of the conductor, specified as a comma separated
pair consisting of "Helght" and a scalar in meters. The default value is 0.635e-4.
Data Types: double

"LineLength” — Physical length of transmission
scalar in meters

Physical length of transmission, specified as a comma separated pair consisting of
"LineLength® and a scalar in meters. The default value is 0.01.

Data Types: double

"LossTangent" — Loss angle tangent of dielectric
scalar

Loss angle tangent of dielectric, specified as a comma separated pair consisting of
"LossTangent” and a scalar. The default value is 0.

rfckt.cpw class

Data Types: double

"Name" — Object name
"Coplanar Waveguide Transmission Line" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer.

Data Types: double

"SigmaCond” — Conductor conductivity
scalar in Siemens per meter

Conductor conductivity, specified as a comma separated pair consisting of *SigmaCond*
and a scalar in Siemens per meter (S/m). The default value is InF.

Data Types: double

"StubMode™ — Type of stub
"NotaStub®™ | "Series” | "Shunt”

Type of stub, specified as a comma separated pair consisting of "StubMode” and one of
the following values: "NotaStub”, "Series”, "Shunt”.

Data Types: double

"SlotWidth" — Physical width of slot
scalar in meters

Physical width of slot, specified as a comma separated pair consisting of *SlotWidth*
and a scalar in meters. The default value is 0.2e-4.

Data Types: double

"StubMode™ — Type of stub
"NotaStub” (default) | "Series”™ | "Shunt”

6-85

6 Objects — Alphabetical List

6-86

Type of stub, specified as a comma separated pair consisting of *StubMode® and one of
the following values: "NotaStub”, "Series”, "Shunt”.

Data Types: double

"Termination™ — Stub transmission line termination
"NotApplicable® (default) | "Open® | "Short*

Stub transmission line termination, specified as a comma separated pair consisting of
"Termination” and one of the following values: "NotaStub*®, "Series”, "Shunt”.

Data Types: double

"Thickness" — Physical thickness of conductor
scalar in meters

Physical thickness of conductor, specified as a comma separated pair consisting of
"Thickness"” and a scalar in meters. The default value is 0.005e-6.

Data Types: double
Methods

Examples

Create Coplanar Waveguide Transmission Line

Create a coplanar waveguide transmission line using rfckt.cpw.

tx=rfckt.cpw("Thickness®,0.0075e-6)

t™@ =

rfckt_cpw with properties:

ConductorWidth: 6.0000e-04
SlotWidth: 2.0000e-04
Height: 6.3500e-04
Thickness: 7.5000e-09
EpsilonR: 9.8000
LossTangent: O
SigmaCond: Inf

rfckt.cpw class

LineLength:
StubMode:
Termination:
nPort:
AnalyzedResult:
Name:

Algorithms

0.0100
"NotAStub*®
"NotApplicable*
2

[1

"Coplanar Waveguide Transmission Line*

The analyze method treats the transmission line as a 2-port linear network. It computes
the AnalyzedResult property of a stub or as a stubless line using the data stored in the
rfckt.cpw object properties as follows:

If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling

frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The anallyze method calculates the ABCD-parameters using the physical length of

the transmission line, d, and the complex propagation constant, k, using the following
equations:

N ok 4 ghd

2

Zy* (ekd e—kd)
B =
2
. okd _ g hd
2%7,

b ok o ,—hd

2

Zy and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed in
terms of the specified conductor strip width, slot width, substrate height, conductor

strip thickness, relative permittivity constant, conductivity and dielectric loss tangent
of the transmission line, as described in [1].

6-87

6 Objects — Alphabetical List

+ If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt”, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

[=]
3
[=]
[=]
3
[=]

[«]
_ml
k- |

[«]

[«]
"“J,
o

[«]

Z;, is the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

When you set the StubMode property to "Series”, the 2-port network consists of a
series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o & o o & o
z:'n | z:'n |

L¥ o o o

Z;n 1s the input impedance of the series circuit. The ABCD-parameters for the series

6-88 stub are calculated as:

rfckt.cpw class

1
Zin
0
1

Saw»
I

The analyze method uses the S-parameters to calculate the group delay values at the

frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

References

[1] Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd
Edition, Artech House, Inc., Norwood, MA, 1996.

See Also

rfckt.coaxial on page 6-75 | rfckt_microstrip on page 6-134 |
rfckt.parallelplate on page 6-153 | rfckt.rlcgline on page 6-165 |
rfckt.twowire on page 6-189 | rfckt.txline on page 6-197

6-89

6 Objects — Alphabetical List

6-90

rfckt.datafile class

Package: rfckt

Component or network from file data

Syntax

h
h

rfckt._datafile
rfckt.datafile("Propertyl®,valuel, "Property2” ,value2,...)

Description

Use the datafi le class to represent RF components and networks that are
characterized by measured or simulated data in a file.

h = rfckt.datafile returns a circuit object whose properties all have their default
values.

h = rfckt.datafile("Propertyl®,valuel, "Property2”,value2, .. .) returns
a circuit object, h, based on the specified properties. Properties that you do not specify
retain their default values.

Use the read method to read the data from a file in one of the following formats:

* Touchstone
+ Agilent P2D
+ Agilent S2D
- AMP

See for information about the .amp format.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

rfckt.datafile class

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-92.

Data Types: function_handle

"File" — File name containing circuit data
1-by-1 character array

File name containing circuit data, specified as a comma-separated pair consisting of
"File" andl-by-1 character array.
Data Types: char

"IntpType” — Interpolation method used in rfckt_amplifier
1-by-N character array

Interpolation method used in rfckt.amplifier, specified as a comma separated pair
consisting of " IntpType® and 1-by-N character array of the following values:

Method Description

Linear (default) Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport"” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read-only property and the default value is 2.

6-91

6 Objects — Alphabetical List

6-92

Data Types: double
Methods

Examples

Represent RF Components and Networks In Data File.

Represent RF components and networks that are characterized by measured or
simulated data in a file using rfckt.datafile.

data=rfckt.datafile("File", "default.s2p”)

data =
rfckt._datafile with properties:

IntpType: “Linear”
File: "default.s2p*
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
Name: "Data File*

Algorithms

The analyze method computes the AnalyzedResul t property using the data stored
in the Fi le object property. If the file you specify with this property contains network
Y- or Z-parameters, analyze first converts these parameters, as they exist in the
rfckt.datafile object, to S-parameters. Using the interpolation method you specify
with the " IntpType” property, analyze interpolates the S-parameters to determine
the S-parameters at the specified frequencies. Specifically, analyze orders the S-
parameters according to the ascending order of their frequencies, f,. It then interpolates
the S-parameters, using the MATLAB interpl function. For example, the curve in

the following diagram illustrates the result of interpolating the S;; parameters at five
different frequencies.

rfckt.datafile class

Interpolated S,, parameter values

LT ‘7 Original S, parameter values

f, 1, fy fs fy——— Frequencies in ascending
order of magnitude
(f

max)

(f

min)

For more information, see “One-Dimensional Interpolation” and the interpl reference
page in the MATLAB documentation.

References

EIA/IBIS Open Forum, Touchstone File Format Specification, Rev. 1.1, 2002 (https://
ibis.org/connector/touchstone_specll.pdf).

See Also

rfckt.amplifier on page 6-64 | rfckt.mixer on page 6-141 | rfckt.passive on
page 6-161 | https://ibis.org/connector/touchstone_specll.pdf

6-93

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

6 Objects — Alphabetical List

6-94

rfckt.delay class

Package: rfckt

Delay line

Syntax

h
h

rfckt.delay
rfckt.delay("Propertyl” ,valuel, "Property2” ,value2,...)

Description

Use the delay class to represent delay lines that are characterized by line loss and time
delay.

h = rfckt.delay returns a delay line object whose properties are set to their default
values.

h = rfckt.delay("Propertyl-”,valuel, "Property2” ,value2, ...) returns
a delay line object, h, with the specified properties. Properties that you do not specify
retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-96.

Data Types: function_handle

"Loss" — Line loss value
positive scalar in dB

rfckt.delay class

Line loss value, specified as a comma separated pair consisting of "Loss" and a positive
scalar in dB. Line loss is the reduction in strength of the signal as it travels over the
delay line . The default value is O.

Data Types: double

"Name" — Object name
"Delay Line" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property and the default value is 2.
Data Types: double

"TimeDelay"™ — Amount of time delay
scalar in seconds

Amount of time delay introduced in the line, specified as a comma separated pair
consisting of "TimeDelay" and a scalar in seconds. The default value is 1.0000e-012.
Data Types: double

"Z0" — Characteristic impedance
scalar in ohms

Characteristic impedance of the delay line, specified as a comma separated pair
consisting of "Z0" and a scalar in ohms. The default value is 50.

Data Types: double

6-95

6 Objects — Alphabetical List

Methods

Examples

Represent Delay Lines

Represent delay lines that are characterized by line loss and time delay using rfckt.delay.

del=rfckt.delay("TimeDelay",le-11)

del =
rfckt._delay with

Z0:

Loss:
TimeDelay:
nPort:
AnalyzedResult:
Name:

Algorithms

properties:

50.0000 + 0.0000i
0

1.0000e-11

2

1

"Delay Line*

The analyze method treats the delay line, which can be lossy or lossless, as a 2-port
linear network. It computes the AnalyzedResult property of the delay line using the
data stored in the rfckt.delay object properties by calculating the S-parameters for
the specified frequencies. This calculation is based on the values of the delay line's 10ss,

a, and time delay, D.

0S;; =0
0 11)
5612 =e p
DSZI —e_p
g

0S22 =0

Above, p = a, + if5, where q, is the attenuation coefficient and £ is the wave number. The
attenuation coefficient q, is related to the loss, a, by

6-96

rfckt.delay class

o =-1n(10%/20)

a
and the wave number £ is related to the time delay, D, by

B=2rD
where fis the frequency range specified in the analyze input argument freq.

The analyze method uses the S-parameters to calculate the group delay values at the
frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

See Also

rfckt.rlcgline on page 6-165 | rfckt.txline on page 6-197

6-97

6 Objects — Alphabetical List

6-98

rfckt.hybrid class

Package: rfckt

Hybrid connected network

Syntax

h
h

rfckt.hybrid
rfckt_hybrid("Propertyl®,valuel, "Property2” ,value2,...)

Description

Use the hybrid class to represent hybrid connected networks of linear RF objects that
are characterized by the components that make up the network.

h = rfckt.hybrid returns a hybrid connected network object whose properties all
have their default values.

h = rfckt_hybrid("Propertyl® ,valuel, "Property2”,value2,...) returns a
hybrid connected network object, h, based on the specified properties. Properties that you
do not specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-100.

Data Types: function_handle

Ckts — Circuit objects in network
cell array of object handles

rfckt.hybrid class

Circuit objects in network, specified as a comma separated pair consisting of "CKts*
and a cell array of object handles. All circuits must be 2-port. By default, this property is
empty.

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport”™ — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double

Methods

Examples

Create Hybrid Connected Networks

Create hybrid connected networks of linear RF objects with two transmission line objects
using rfckt.hybrid.

tx1l = rfckt.txline;

t~x2 = rfckt.txline;

hyb = rfckt.hybrid("Ckts",{tx1,tx2})
hyb =

rfckt_hybrid with properties:
Ckts: {[1x1 rfckt.txline] [1x1 rfckt.txline]}

nPort: 2
AnalyzedResult: []

6-99

6 Objects — Alphabetical List

Name: "Hybrid Connected Network®

Algorithms

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the Ckts property as follows:

* The analyze method first calculates the A matrix of the hybrid network. It starts
by converting each component network's parameters to an A matrix. The following
figure shows a hybrid connected network consisting of two 2-port networks, each
represented by its A matrix,

[A]

[A"]

where

[h'] — B’Lll’ h12’ E
9121' h22, H
7] = %11" hig E
Biot" hos H

* The analyze method then calculates the A matrix for the hybrid network by

calculating the sum of the A matrices of the individual networks. The following
equation illustrates the calculations for two 2-port networks.

4 ” ’ 4
_|m1 thi g g

[h] ’ V4 ’ ”
hoy +hgy hgg +hgy

6-100

rfckt.hybrid class

+ Finally, analyze converts the A matrix of the hybrid network to S-parameters at the
frequencies specified in the analyze input argument freq.

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

See Also

rfckt.cascade on page 6-70 | rfckt_hybridg on page 6-102 | rfckt.parallel
on page 6-148 | rfckt.series on page 6-172

6-101

6 Objects — Alphabetical List

6-102

rfckt.hybridg class

Package: rfckt

Inverse hybrid connected network

Syntax

h = rfckt.hybridg
h = rfckt_hybridg("Propertyl-,valuel, "Property2” ,value2,...)
Description

Use the hybridg class to represent inverse hybrid connected networks of linear RF
objects that are characterized by the components that make up the network.

h = rfckt.hybridg returns an inverse hybrid connected network object whose
properties all have their default values.

h = rfckt_hybridg("Propertyl” ,valuel, "Property2” ,value2, ...) returns an
inverse hybrid connected network object, h, based on the specified properties. Properties
that you do not specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-104.

Data Types: function_handle

Ckts — Circuit objects in network
cell array of object handles

rfckt.hybridg class

Circuit objects in network, specified as a comma separated pair consisting of "CKts*
and a cell array of object handles. All circuits must be 2-port. By default, this property is
empty.

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport”™ — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double

Methods

Examples

Create Inverse Hybrid Connected Networks

Create inverse hybrid connected networks of linear RF objects with two transmission line
objects using rfckt.hybridg.

tx1l = rfckt.txline;
t~x2 = rfckt.txline;
invhyb = rfckt._hybridg("Ckts”,{tx1,tx2})
invhyb =
rfckt_hybridg with properties:
Ckts: {[1x1 rfckt.txline] [1x1 rfckt.txline]}

nPort: 2
AnalyzedResult: []

6-103

6 Objects — Alphabetical List

Name: "Hybrid G Connected Network®

Algorithms

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the Ckts property as follows:

1 The analyze method first calculates the g matrix of the inverse hybrid network.
It starts by converting each component network's parameters to a g matrix. The
following figure shows an inverse hybrid connected network consisting of two 2-port
networks, each represented by its g matrix,

where

[] _ %11 812: 0
%’21 822
" D

. _%11 812
[g] Heor' 8225

2 The analyze method then calculates the g matrix for the inverse hybrid network
by calculating the sum of the g matrices of the individual networks. The following
equation illustrates the calculations for two 2-port networks.

(g]= g1l +811 812 +812

’ ”n ’ n
821 T 821 822 822

6-104

rfckt.hybridg class

3 Finally, analyze converts the g matrix of the inverse hybrid network to S-
parameters at the frequencies specified in the analyze input argument freq.

References

Davis, A.M., Linear Circuit Analysis, PWS Publishing Company, 1998.

See Also

rfckt.cascade on page 6-70 | rfckt_hybrid on page 6-98 | rfckt.parallel on
page 6-148 | rfckt.series on page 6-172

6-105

6 Objects — Alphabetical List

6-106

rfckt.Icbandpasspi class

Package: rfckt

Bandpass pi filter

Syntax
h = rfckt.Icbandpasspi
h = rfckt.lcbandpasspi ("Propertyl”,valuel, "Property2” ,value2,...)

Description

Use the Icbandpasspi class to represent a bandpass pi filter as a network of inductors
and capacitors.

The LC bandpass pi network object is a 2-port network as shown in the following circuit
diagram.

L, C, L, Cy

-

Ly, ——C4 Ly ——Csy

In the diagram, [L, Lo, Ls, Ly, ...] is the value of the "L* object property, and [C;, Cs, Cs,
Cy4, ...] is the value of the "C" object property.

h = rfckt. Icbandpasspi returns an LC bandpass pi network object whose properties
all have their default values.

h = rfckt.lcbandpasspi("Propertyl”,valuel, "Property2” ,value2,...)
returns an LLC bandpass pi network object, h, based on the specified properties.
Properties that you do not specify retain their default values.

rfckt.lcbandpasspi class

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of *C" and a positive vector in farads. The length of
the capacitance vector must be equal to the length of the vector you provide for "L*". The
default value is [0.3579e-10, 0.0118e-10, 0.3579e-10].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The length of
the inductance vector must be equal to the length of the vector you provide for "C*". The
default value is [0.0144e-7, 0.4395e-7, 0.0144e-7].

Data Types: double

"Name™ — Object name
"LC Bandpass Pi" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name*® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

6-107

6 Objects — Alphabetical List

6-108

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double
Methods

Examples
Create LC BandPass Pi Filter

Create an LC bandpass filter of capacitor values le-12 and 4el12 farads, inductor values
2e-9 and 2.5e-9 henries.

Ffilter = rfckt.lcbandpasspi("C",[1le-12 4e-12],°L",[2e-9 2.5e-9])

filter =
rfckt.Icbandpasspi with properties:
L: [2x1 double]
C: [2x1 double]
nPort: 2

AnalyzedResult: []
Name: "LC Bandpass Pi*

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

Zverev, A.1., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasstee on page 6-110 | rfckt. lcbandstoppi on page 6-114 |
rfckt. lcbandstoptee on page 6-118 | rfckt. lchighpasspi on page 6-122 |

rfckt.lcbandpasspi class

rfckt. Ichighpasstee on page 6-125 | rfckt. lclowpasspi on page 6-128 |
rfckt. lclowpasstee on page 6-131

6-109

6 Objects — Alphabetical List

6-110

rfckt.Icbandpasstee class

Package: rfckt

Bandpass tee filter

Syntax
h = rfckt.lcbandpasstee
h = rfckt.lcbandpasstee("Propertyl”,valuel, "Property2”,value2,...)

Description

Use the Icbandpasstee class to represent a bandpass tee filter as a network of
inductors and capacitors.

The LC bandpass tee network object is a 2-port network as shown in the following circuit
diagram.

L3 Cs

T

L, ——GC, L, ——cC,

In the diagram, [L, Ly, Ls, Ly, ...] is the value of the "L* object property, and [C;, Cs, Cs,
C,, ...] is the value of the "C* object property.

h = rfckt. Icbandpasstee returns an LLC bandpass tee network object whose
properties all have their default values.

h = rfckt.lcbandpasstee("Propertyl”,valuel, "Property2” ,value2,...)
returns an LLC bandpass tee network object, h, based on the specified properties.
Properties that you do not specify retain their default values.

rfckt.lcbandpasstee class

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of *C" and a positive vector in farads. The length of
the capacitance vector must be equal to the length of the vector you provide for "L*". The
default value is [0.0186e-10, 0.1716e-10, 0.0186e-10].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The length of
the inductance vector must be equal to the length of the vector you provide for "C*". The
default value is [0.2781e-7, 0.0301e-7, 0.278le-7].

Data Types: double

"Name™ — Object name
"LC Bandpass Tee" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name*® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

6-111

6 Objects — Alphabetical List

6-112

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double
Methods

Examples

LC Bandpass Tee Filter

Create a LLC Bandpass Tee Filter using rfckt. Icbandpasstee.

filter = rfckt.lcbandpasstee("C",[le-12 4e-12],"L",[2e-9 2.5e-9])

filter =
rfckt. Icbandpasstee with properties:
L: [2x1 double]
C: [2x1 double]
nPort: 2

AnalyzedResult: []
Name: "LC Bandpass Tee*

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

Zverev, A.l1., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasspi on page 6-106 | rfckt. Icbandstoppi on page 6-114 |
rfckt. lcbandstoptee on page 6-118 | rfckt. lchighpasspi on page 6-122 |

rfckt.lcbandpasstee class

rfckt. Ichighpasstee on page 6-125 | rfckt. lclowpasspi on page 6-128 |
rfckt. lclowpasstee on page 6-131

6-113

6 Objects — Alphabetical List

6-114

rfckt.Icbandstoppi class

Package: rfckt

Bandstop pi filter

Syntax

h
h

rfckt. Icbandstoppi
rfckt. Icbandstoppi ("Propertyl-,valuel, "Property2*,value2,...)

Description

Use the Icbandstoppi class to represent a bandstop pi filter as a network of inductors
and capacitors. The L.C bandstop pi network object is a 2-port network as shown in the
following circuit diagram.

Lo Ly
C, Cy "~
| | | |

L, | L, |

Cq Cs

1 1

In the diagram, [L, Ly, L3, Ly, ...] is the value of the "L " object property, and [C,, Cs, Cs,
C,, ...] is the value of the "C" object property.

h = rfckt.lcbandstoppi returns an LLC bandstop pi network object whose properties
all have their default values.

h = rfckt.lcbandstoppi("Propertyl”,valuel, "Property2” ,value2,...)
returns an L.C bandstop pi network object, h, based on the specified properties.
Properties that you do not specify retain their default values.

rfckt.lcbandstoppi class

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of *C" and a positive vector in farads. The length of
the capacitance vector must be equal to the length of the vector you provide for "L*". The
default value is [0.0184e-10, 0.2287e-10, 0.0184e-10].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The length of
the inductance vector must be equal to the length of the vector you provide for "C*". The
default value is [0.2809e-7, 0.0226e-7, 0.2809e-7].

Data Types: double

"Name™ — Object name
"LC Bandstop Pi" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name*® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

6-115

6 Objects — Alphabetical List

6-116

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double
Methods

Examples

LC Bandstop Pi Filter

Create a LLC Bandstop Pi Filter using rfckt. Icbandstoppi.

Ffilter = rfckt_lcbandstoppi("C",[1le-12 4e-12],°L",[2e-9 2.5e-9])

filter =
rfckt.Icbandstoppi with properties:
L: [2x1 double]
C: [2x1 double]
nPort: 2

AnalyzedResult: []
Name: "LC Bandstop Pi*

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

Zverev, A.l1., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasspi on page 6-106 | rfckt. Icbandpasstee on page 6-110 |
rfckt. lcbandstoptee on page 6-118 | rfckt. lchighpasspi on page 6-122 |

rfckt.lcbandstoppi class

rfckt. Ichighpasstee on page 6-125 | rfckt. lclowpasspi on page 6-128 |
rfckt. lclowpasstee on page 6-131

6-117

6 Objects — Alphabetical List

6-118

rfckt.Icbandstoptee class

Package: rfckt

Bandstop tee filter

Syntax

h
h

rfckt.lcbandstoptee
rfckt. Icbandstoptee("Propertyl”,valuel, "Property2- ,value2,...)

Description

Use the Icbandstoptee class to represent a bandstop tee filter as a network of
inductors and capacitor. The LC bandstop tee network object is a 2-port network as
shown in the following circuit diagram.

Ly Ly
—_— C1 C3 _— - -
|| ||
| L, | Ly
C2 C4

-

In the diagram, [L, Lo, Ls, Ly, ...] is the value of the "L* object property, and [C;, Cs, Cs,
Cy4, ...] is the value of the "C" object property.

h = rfckt. Icbandstoptee returns an LLC bandstop tee network object whose
properties all have their default values.

h = rfckt.lcbandstoptee("Propertyl”,valuel, "Property2” ,value2,...)
returns an L.C bandstop tee network object, h, based on the specified properties.
Properties that you do not specify retain their default values.

rfckt.lcbandstoptee class

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of *C" and a positive vector in farads. The length of
the capacitance vector must be equal to the length of the vector you provide for "L*". The
default value is [0.0186e-10, 0.1716e-10, 0.0186e-10].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The length of
the inductance vector must be equal to the length of the vector you provide for "C*". The
default value is [0.2781e-7, 0.0301e-7, 0.278le-7].

Data Types: double

"Name™ — Object name
"LC Bandstop Tee" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name*® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

6-119

6 Objects — Alphabetical List

6-120

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double
Methods

Examples

LC Bandstop Tee Filter

Create a LLC Bandstop Tee Filter using rfckt. Icbandstoptee.

filter = rfckt.lcbandstoptee("C",[le-12 4e-12],"L",[2e-9 2.5e-9])

filter =

rfckt. Icbandstoptee with properties:

L:

C:

nPort:
AnalyzedResult:
Name:

References

[2x1 double]
[2x1 double]
2

1
"LC Bandstop Tee*

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,

2000.

Zverev, A.l1., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasspi on page 6-106 | rfckt. Icbandpasstee on page 6-110 |
rfckt. Ilcbandstoppi on page 6-114 | rfckt. Ichighpasspi on page 6-122 |

rfckt.lcbandstoptee class

rfckt. Ichighpasstee on page 6-125 | rfckt. lclowpasspi on page 6-128 |
rfckt. lclowpasstee on page 6-131

6-121

6 Objects — Alphabetical List

rfckt.Ichighpasspi class

Package: rfckt

Highpass pi filter

Syntax

h
h

rfckt.lchighpasspi
rfckt.Ichighpasspi ("Propertyl” ,valuel, "Property2” ,value2,...)

Description

Use the Ichighpasspi class to represent a highpass pi filter as a network of inductors
and capacitors.

The LC highpass pi network object is a 2-port network as shown in the following circuit
diagram.

In the diagram, [L, Lo, L3, ...] is the value of the "L" object property, and [C;, Cs, Cs, ...]
is the value of the "C" object property.

h = rfckt.Ichighpasspi returns an LC highpass pi network object whose properties
all have their default values.

h = rfckt.lchighpasspi("Propertyl”,valuel, "Property2” ,value2,...)

returns an LC highpass pi network object, h, based on the specified properties. Properties
that you do not specify retain their default values.

6-122

rickt.Ichighpasspi class

Properties

"AnalyzedResult” — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of "C" and a positive vector in farads. The default value
is [0.1188e-5, 0.1188e-5].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The default
value is [2.2363e-9].

Data Types: double

"Name™ — Object name
"LC Highpass Pi" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of *Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport”™ — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property.The default value is 2.

6-123

6 Objects — Alphabetical List

6-124

Data Types: double
Methods

Examples

LC Highpass Pi Filter
Create a LLC Highpass Pi Filter using rfckt. lchighpasspi.

filter = rfckt._lchighpasspi("C",[1le-12 4e-12],°L",[2e-9 2.5e-9])

filter =
rfckt.Ichighpasspi with properties:

L: [2x1 double]
C: [2x1 double]
nPort: 2
AnalyzedResult: []
Name: "LC Highpass Pi*

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

Zverev, A.l., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasspi on page 6-106 | rfckt. Icbandpasstee on page 6-110 |
rfckt. lcbandstoppi on page 6-114 | rfckt. Icbandstoptee on page 6-118 |
rfckt. lchighpasstee on page 6-125 | rfckt. Iclowpasspi on page 6-128 |
rfckt. Iclowpasstee on page 6-131

rickt.Ichighpasstee class

rfckt.Ichighpasstee class

Package: rfckt

Highpass tee filter

Syntax
h = rfckt.lIchighpasstee
h = rfckt.lIchighpasstee("Propertyl®,valuel, "Property2” ,value2,...)

Description

Use the Ichighpasstee class to represent a highpass tee filter as a network of
inductors and capacitors.

The LC highpass tee network object is a 2-port network as shown in the following circuit
diagram.

In the diagram, [L, Ly, L3, ...] is the value of the "L" object property, and [C,, Cs, Cs, ...]
is the value of the "C" object property.

h = rfckt. Ichighpasstee returns an LLC highpass tee network object whose
properties all have their default values.

h = rfckt.lchighpasstee("Propertyl”,valuel, "Property2” ,value2,...)

returns an LC highpass tee network object, h, based on the specified properties.
Properties that you do not specify retain their default values.

6-125

6 Objects — Alphabetical List

Properties

"AnalyzedResult” — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of "C" and a positive vector in farads. The default value
is [[0.4752e-9, 0.4752e-9].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The default
value is [5.5907e-6].

Data Types: double

"Name™ — Object name
"LC Highpass Tee" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of *Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport”™ — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

6-126

rickt.Ichighpasstee class

Data Types: double
Methods

Examples

LC Highpass Tee Filter

Create a LLC Highpass Tee Filter using rfckt. Ichighpasstee.

filter = rfckt.lIchighpasstee("C",[1le-12 4e-12],"L",[2e-9 2.5e-9])

filter =
rfckt.Ichighpasstee with properties:

L: [2x1 double]
C: [2x1 double]
nPort: 2
AnalyzedResult: []
Name: "LC Highpass Tee"

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

Zverev, A.l., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasspi on page 6-106 | rfckt. Icbandpasstee on page 6-110 |
rfckt. lcbandstoppi on page 6-114 | rfckt. Icbandstoptee on page 6-118 |
rfckt. Ichighpasspi on page 6-122 | rfckt. Iclowpasspi on page 6-128 |
rfckt. Iclowpasstee on page 6-131

6-127

6 Objects — Alphabetical List

6-128

rfckt.Iclowpasspi class

Package: rfckt

Lowpass pi filter

Syntax
h = rfckt.Iclowpasspi
h = rfckt.Iclowpasspi("Propertyl” ,valuel, "Property2”,value2,...)

Description

Use the Iclowpasspi class to represent a lowpass pi filter as a network of inductors and
capacitors.

The LC lowpass pi network object is a 2-port network as shown in the following circuit
diagram.

Ly L,

-

—— C, ——GC, ——C,

In the diagram, [L, Lo, Ls, ...] is the value of the "L" object property, and [C;, Cs, Cs, ...]
is the value of the "C" object property.

h = rfckt. Iclowpasspi returns an LC lowpass pi network object whose properties all
have their default values.

h = rfckt.lclowpasspi("Propertyl” ,valuel, "Property2”,value2,...)
returns an LC lowpass pi network object, h, based on the specified properties. Properties
that you do not specify retain their default values.

rfckt.Iclowpasspi class

Properties

"AnalyzedResult” — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of "C" and a positive vector in farads. The default value
is [0.5330e-8, 0.5330e-8].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The default
value is [2.8318e-6].

Data Types: double

"Name™ — Object name
"LC Lowpass Pi" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of *Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport”™ — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. By default, the value is 2.

6-129

6 Objects — Alphabetical List

6-130

Data Types: double
Methods

Examples

LC Lowpass Pi Filter

Create a LLC lowpass pi Filter using rfckt. Iclowpasspi.

Ffilter = rfckt._lclowpasspi("C",[1le-12 4e-12],"L",[2e-9 2.5e-9])

filter =
rfckt.Iclowpasspi with properties:

L: [2x1 double]
C: [2x1 double]
nPort: 2
AnalyzedResult: []
Name: "LC Lowpass Pi*

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

Zverev, A.l., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasspi on page 6-106 | rfckt. Icbandpasstee on page 6-110 |
rfckt. lcbandstoppi on page 6-114 | rfckt. Icbandstoptee on page 6-118 |
rfckt. lIchighpasspi on page 6-122 | rfckt. Ichighpasstee on page 6-125 |
rfckt. Iclowpasstee on page 6-131

rickt.Iclowpasstee class

rfckt.Iclowpasstee class

Package: rfckt

Lowpass tee filter

Syntax

h
h

rfckt. Iclowpasstee
rfckt. Iclowpasstee("Propertyl” ,valuel, "Property2” ,value2,...)

Description

Use the Iclowpasstee class to represent a lowpass tee filter as a network of inductors
and capacitors.

The LC lowpass tee network object is a 2-port network as shown in the following circuit
diagram.

L1 I-2 |—3

P T —— T —— -

S C1 N C2 S C3

In the diagram, [L;, Lo, Ls, ...] is the value of the "L" object property, and [C;, Cs, Cs, ...]
is the value of the "C" object property.

h = rfckt.lIclowpasstee returns an L.C lowpass tee network object whose properties
all have their default values.

h = rfckt.lclowpasstee("Propertyl” ,valuel, "Property2” ,value2,...)
returns an LC lowpass tee network object, h, based on the specified properties. Properties
that you do not specify retain their default values.

6-131

6 Objects — Alphabetical List

Properties

"AnalyzedResult” — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. The
values are computed over the specified frequency range. By default, this property is
empty.

Data Types: function_handle

"C" — Capacitance value
positive vector in farads

Capacitance value from source to load of all capacitors in the network, specified as a
comma separated pair consisting of "C" and a positive vector in farads. The default value
is [1.1327e-9].

Data Types: double

"L" — Inductance value
positive vector in henries

Inductance value from source to load of all inductors in the network, specified as a
comma separated pair consisting of "L " and a positive vector in henries. The default
value is [0.1332e-4, 0.1332e-4].

Data Types: double

"Name™ — Object name
"LC Lowpass Tee" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of *Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport”™ — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

6-132

rickt.Iclowpasstee class

Data Types: double
Methods

Examples

LC Lowpass Tee Filter

Create a L.C lowpass tee Filter using rfckt. Iclowpasstee.

Ffilter = rfckt._.lclowpasstee("C",[1le-12 4e-12],°L",[2e-9 2.5e-9])

filter =
rfckt.Iclowpasstee with properties:

L: [2x1 double]
C: [2x1 double]
nPort: 2
AnalyzedResult: []
Name: "LC Lowpass Tee*

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

Zverev, A.l., Handbook of Filter Synthesis, John Wiley & Sons, 1967.

See Also

rfckt. lcbandpasspi on page 6-106 | rfckt. Icbandpasstee on page 6-110 |
rfckt. lcbandstoppi on page 6-114 | rfckt. Icbandstoptee on page 6-118 |
rfckt. lIchighpasspi on page 6-122 | rfckt. Ichighpasstee on page 6-125 |
rfckt. Iclowpasspi on page 6-128

6-133

6 Objects — Alphabetical List

6-134

rfckt.microstrip class

Package: rfckt

Microstrip transmission line

Syntax

h = rfckt.microstrip
h = rfckt.microstrip("Propertyl®,valuel, "Property2” ,value2,...)

Description

Use the microstrip class to represent microstrip transmission lines that are
characterized by line dimensions and optional stub properties.

A microstrip transmission line is shown in cross-section in the following figure. Its
physical characteristics include the microstrip width (w), the microstrip thickness (¢), the
substrate height (d), and the relative permittivity constant (g).

“ 4
L T-

h = rfckt.microstrip returns a microstrip transmission line object whose properties
are set to their default values.

h = rfckt.microstrip("Propertyl®,valuel, "Property2” ,value2,...)
returns a microstrip transmission line object, h, with the specified properties. Properties
that you do not specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

rfckt.microstrip class

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-137.

Data Types: function_handle

"EpsilonR™ — Relative permittivity of dielectric
scalar

Relative permittivity of dielectric, specified as a comma separated pair consisting of
"EpsilonR™ and a scalar. The relative permittivity is the ratio of permittivity of the

dielectric, € , to the permittivity in free space, &;. The default value is 9.8.
Data Types: double

"Height" — Dielectric thickness or physical height of conductor

scalar in meters

Dielectric thickness or physical height of the conductor, specified as a comma separated
pair consisting of "Height" and a scalar in meters. The default value is 6.35e-4.

Data Types: double

"LineLength” — Physical length of transmission
scalar in meters

Physical length of transmission, specified as a comma separated pair consisting of
"LineLength” and a scalar in meters. The default value is 0.01.

Data Types: double

"LossTangent”™ — Loss angle tangent of dielectric
scalar

Loss angle tangent of dielectric, specified as a comma separated pair consisting of
"LossTangent” and a scalar. The default value is O.

Data Types: double

"Name® — Object name
"Microstrip Waveguide Transmission Line" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

6-135

6 Objects — Alphabetical List

6-136

Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.
Data Types: double

*SigmaCond™ — Conductor conductivity
scalar in Siemens per meter

Conductor conductivity, specified as a comma separated pair consisting of *SigmaCond*”
and a scalar in Siemens per meter (S/m). The default value is Inf.

Data Types: double

"StubMode™ — Type of stub
"NotaStub” (default) | "Series” | "Shunt*”

Type of stub, specified as a comma separated pair consisting of "StubMode® and one of
the following values: "NotaStub”, "Series”, "Shunt”.

Data Types: double

"Termination” — Stub transmission line termination
"NotApplicable® (default) | "Open*® | "Short”

Stub transmission line termination, specified as a comma separated pair consisting of
"Termination” and one of the following values: "NotaStub*®, "Series”, "Shunt”.

Data Types: double

"Thickness" — Physical thickness of microstrip
scalar in meters

Physical thickness of microstrip, specified as a comma separated pair consisting of
"Thickness" and a scalar in meters. The default value is 5.0e-6.
Data Types: double

"Width" — Physical width of parallel-plate
scalar in meters

rfckt.microstrip class

Physical width of parallel-plate, specified as a comma separated pair consisting of
*Width" and a scalar in meters. The default value is 6.0e-4.

Data Types: double

Methods

Examples
Microstrip Transmission Line

Create a microstrip transmission line using rfckt.microstrip.

txl=rfckt.microstrip("Thickness",0.0075e-6)

t~1l =

rfckt.microstrip with properties:

Width: 6.0000e-04
Height: 6.3500e-04
Thickness: 7.5000e-09
EpsilonR: 9.8000
LossTangent: O

SigmaCond: Inf
LineLength: 0.0100
StubMode: “"NotAStub®
Termination: “NotApplicable®
nPort: 2
AnalyzedResult: []
Name: "Microstrip Transmission Line*

Algorithms

The analyze method treats the microstrip line as a 2-port linear network and models
the line as a transmission line with optional stubs. The analyze method computes

6-137

6 Objects — Alphabetical List

6-138

the AnalyzedResult property of the transmission line using the data stored in the
rfckt._microstrip object properties as follows:

If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The analyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

A:ekd 4o kd
2
ZO*(ekd —kd)
B=
2
o okd _ gkd
2%7,
kd | -kd
D= e +e
2

Zy and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed
in terms of the specified conductor strip width, substrate height, conductor strip
thickness, relative permittivity constant, conductivity, and dielectric loss tangent of
the microstrip line, as described in [1].

If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt®, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

rfckt.microstrip class

[=]

3
[=]
[=]
3
[=]

Ei
4
5

Z;, 1s the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

When you set the StubMode property to "Series”, the 2-port network consists of a

series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o 4 o o 4
Zin | Zin |

]

Z;, 1s the input impedance of the series circuit. The ABCD-parameters for the series
stub are calculated as:

1
Zin
0
1

Daw»
I

6-139

6 Objects — Alphabetical List

References

[1] Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd
Edition, Artech House, Inc., Norwood, MA, 1996.

See Also

rfckt.coaxial on page 6-75 | rfckt.cpw on page 6-83 | rfckt.parallelplate on
page 6-153 | rfckt_rlcgline on page 6-165 | rfckt.twowire on page 6-189 |
rfckt.txline on page 6-197

6-140

rfckt.mixer class

rfckt.mixer class

Package: rfckt

2-port representation of RF mixer and its local oscillator

Syntax

h = rfckt.mixer
h = rfckt.mixer("Propertyl”,valuel, "Property2”,value2,...)

Description

Use the mixer class to represent RF mixers and their local oscillators that are
characterized by network parameters, noise data, nonlinearity data, and local oscillator
frequency.

h = rfckt.mixer returns a mixer object whose properties all have their default values.

h = rfckt.mixer("Propertyl”,valuel, "Property2” ,value2,...) returns a
circuit object, h, , that represents a mixer and its local oscillator (LO) with two ports (RF
and IF). Properties that you do not specify retain their default values.

Use the read method to read the mixer data from a data file in one of the following
formats:

* Touchstone
+ Agilent P2D
+ Agilent S2D
- AMP

See for information about the .amp format.

Note: If you set NonLinearData using rfdata. ip3 or rfdata.power, then the
property is converted from scalar OIP3 format to the format of rfdata. ip3 or
rfdata.power.

6-141

6 Objects — Alphabetical List

6-142

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-145.

Data Types: function_handle

"FLO" — Local oscillator frequency
positive scalar in hertz

Local oscillator frequency, specified as a comma-separated pair consisting of *FLO" and
positive scalar in hertz. If the MixerType is set to "DownConverter”, the mixer output

frequency is f,,; = fi, — f1, - If the MixerType is set to "UpConverter”, the mixer

output frequency is f,,; = fi, + 11, -
Data Types: double

"FreqOffset” — Frequency offset data
positive vector in hertz

Frequency offset data, specified as a comma-separated pair consisting of *FreqOffset”
and positive vector in hertz. The "FreqOffset” values correspond to phase noise level
values specified by the "PhaseNoiselLevel " property. By default, this property is
empty.

Data Types: double

"IntpType” — Interpolation method used in rfckt_mixer
1-by-N character array

Interpolation method used in rfckt.mixer, specified as a comma-separated pair
consisting of " IntpType" and 1-by-N character array of the following values:

Method Description

Linear (default) Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation

rfckt.mixer class

Data Types: char

"MixerSpurData” — Data from mixer spur table
rfdata.mixerspur object

Data from mixer spur table, specified as a comma-separated pair consisting of
"MixerSpurData® and rfdata.mixerspur object.

Data Types: function_handle

"MixerType" — Type of mixer
"DownConverter"® (default) | "UpConverter"”

Type of mixer, specified as a comma-separated pair consisting of "MixerType" and
"DownConverter"® or "UpConverter-.

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"NetworkData" — Network parameter data
rfdata.network object

Network parameter data, specified as a comma-separated pair consisting of
"NetworkData® and rfdata.network object.

Data Types: function_handle

"NoiseData" — Noise information
Scalar noise figure in decibels | rfdata.noise object | rfdata.nf object

Noise information, specified as a comma-separated pair consisting of "NoiseData” and
one of the following:

* Scalar noise figure in dB
+ rfdata.noise object
+ rfdata.nf object

6-143

6 Objects — Alphabetical List

Data Types: double | function_handle

"NonlinearData” — Nonlinearity information
Scalar OIP3 in dB | rfdata.power object | rfdata. ip3 object

Noise information, specified as a comma-separated pair consisting of
"NonlinearityData” and one of the following:

* Scalar OIP3 in dB
+ rfdata.power object
- rfdata. ip3 object

Data Types: double | function_handle

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double

*PhaseNoiselLevel " — Phase noise data
vector in dbc/Hz

Phase noise data, specified as a comma-separated pair consisting of
"PhaseNoiselLevel " and vector in dbc/Hz.

Data Types: double

Methods

Examples

RF Mixer

Create an RF mixer using rfckt.mixer.

rfmixer = rfckt_mixer("IntpType®, “cubic”)

6-144

rfckt.mixer class

rfmixer =

rfckt_mixer with properties:

MixerSpurData:
MixerType:

FLO:
FreqOffset:
PhaseNoiselLevel:
NoiseData:
NonlinearData:
IntpType:
NetworkData:
nPort:
AnalyzedResult:
Name:

Algorithms

[1

*Downconverter"
1.0000e+09
1

L1
[1x1 rfdata.noise]

Inf

"Cubic*

[1x1 rfdata.network]
2

[1x1 rfdata.data]
"Mixer*

The analyze method computes the AnalyzedResult property using the data stored in

the rfckt_amplifier object properties as follows:

* The analyze method uses the data stored in the "NoiseData" property of the

rfckt.amplifier object to calculate the noise figure.

* The analyze method uses the data stored in the "NonlinearData" property of the
rfckt.amplifier object to calculate OIP3.

If power data exists in the "NonlinearData” property, the block extracts the AM/

AM and AM/PM nonlinearities from the power data.

If the "NonlinearData” property contains only IP3 data, the method computes and
adds the nonlinearity by:

1 Using the third-order input intercept point value in dBm to compute the factor, f,
that scales the input signal before the amplifier object applies the nonlinearity:

FAM/AM(u)=u_%

6-145

6 Objects — Alphabetical List

2 Computing the scaled input signal by multiplying the amplifier input signal by f.

w

Limiting the scaled input signal to a maximum value of 1.

4 Applying an AM/AM conversion to the amplifier gain, according to the following
cubic polynomial equation:

¥
Fam/am @ =u—-—

where u is the magnitude of the scaled input signal, which is a unitless
normalized input voltage.

* The analyze method uses the data stored in the "NetworkData" property of the
rfckt.amplifier object to calculate the group delay values of the amplifier at the
frequencies specified in freq, as described in the analyze reference page.

* The analyze method uses the data stored in the "NetworkData" property of the
rfckt.amplifier object to calculate the S-parameter values of the amplifier at the
frequencies specified in freq. If the "NetworkData" property contains network Y-
or Z-parameters, the analyze method first converts the parameters to S-parameters.
Using the interpolation method you specify with the " IntpType” property, the
analyze method interpolates the S-parameter values to determine their values at the
specified frequencies.

Specifically, the analyze method orders the S-parameters according to the ascending
order of their frequencies, f,,. It then interpolates the S-parameters, using the
MATLAB interpl function. For example, the curve in the following diagram
llustrates the result of interpolating the S;; parameters at five different frequencies.
Interpolated S, parameter values

Original S, parameter values

f, f fy fs fy~+—— Frequencies in ascending
order of magnitude
min) (fmax)

6-146

rfckt.mixer class

For more information, see “One-Dimensional Interpolation” and the interpl
reference page in the MATLAB documentation.

As shown in the preceding diagram, the analyze method uses the parameter values
at frin, the minimum input frequency, for all frequencies smaller than f,,;,. It uses the
parameters values at f,,.;, the maximum input frequency, for all frequencies greater
than f,,... In both cases, the results may not be accurate, so you need to specify
network parameter values over a range of frequencies that is wide enough to account
for the amplifier behavior.

References

EIA/IBIS Open Forum, Touchstone File Format Specification, Rev. 1.1, 2002 (https://
ibis.org/connector/touchstone_specll.pdf).

See Also

rfckt.amplifier on page 6-64 | rfckt._.datafile on page 6-90 | rfckt._passive
on page 6-161 | rfdata.data on page 6-205 | rfdata. ip3 on page 6-210

| rfdata.mixerspur on page 6-213 | rfdata.network on page 6-215 |
rfdata.nf on page 6-218 | rfdata.noise on page 6-220 | rfdata.power on

page 6-223 | https://ibis.org/connector/touchstone_specl1.pdf

6-147

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

6 Objects — Alphabetical List

rfckt.parallel class

Package: rfckt

Parallel connected network

Syntax

h
h

rfckt.parallel
rfckt._parallel ("Propertyl®,valuel, "Property2” ,value2,...)

Description

Use the paral lel class to represent networks of linear RF objects connected in parallel
that are characterized by the components that make up the network. The following figure
shows a pair of networks in a parallel configuration.

s 0
or 0

h = rfckt.parallel returns a parallel connected network object whose properties all
have their default values.

h = rfckt.parallel("Propertyl®,valuel, "Property2” ,value2,...) returns
a parallel connected network object, h, based on the specified properties. Properties that
you do not specify retain their default values.

6-148

rfckt.parallel class

Properties

"AnalyzedResult” — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-150.

Data Types: function_handle

Ckts — Circuit objects in network
cell array of object handles

Circuit objects in network, specified as a comma separated pair consisting of "Ckts*”
and a cell array of object handles. All circuits must be 2-port. By default, this property is
empty.

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double

6-149

6 Objects — Alphabetical List

6-150

Methods

Examples

Network of RF Obijects In Parallel

Create a network of tranmission lines connected in parallel using rfckt.parallel.

t>x1 rfckt.txline;
t™>x2 rfckt.txline;
rfplel = rfckt._parallel("Ckts",{tx1,tx2})

rfplel =
rfckt._parallel with properties:

Ckts: {[1x1 rfckt.txline] [1x1 rfckt.txline]}
nPort: 2

AnalyzedResult: []
Name: "Parallel Connected Network"®

Algorithms

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the Ckts property as follows:

1 The analyze method first calculates the admittance matrix of the parallel connected
network. It starts by converting each component network's parameters to an
admittance matrix. The following figure shows a parallel connected network
consisting of two 2-port networks, each represented by its admittance matrix,

rfckt.parallel class

(v]=dn Yizg
%21' Y22, %
v = SYn" Yip E
Bo Yoo E
2 The analyze method then calculates the admittance matrix for the parallel network

by calculating the sum of the individual admittances. The following equation
illustrates the calculations for two 2-port circuits.

Y, +Y;{ Yo +Y,
[Y] _ [Y'] + [Y'] _ 11, 11” 12, 12”
Yo +Y51 Yoo +¥y

3 Finally, analyze converts the admittance matrix of the parallel network to S-
parameters at the frequencies specified in the analyze input argument freq.

The analyze method uses the parallel S-parameters to calculate the group delay values

at the frequencies specified in the analyze input argument freq, as described in the
analyze reference page.

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

6-151

6 Objects — Alphabetical List

See Also

rfckt.cascade on page 6-70 | rfckt._hybrid on page 6-98 | rfckt.hybridg on page
6-102 | rfckt.series on page 6-172

6-152

rickt.parallelplate class

rfckt.parallelplate class

Package: rfckt

Parallel-plate transmission line

Syntax

h
h

rfckt.parallelplate
rfckt.parallelplate("Propertyl”,valuel, "Property2” ,value2,...)

Description

Use the paral lelplate class to represent parallel-plate transmission lines that are
characterized by line dimensions and optional stub properties.

A parallel-plate transmission line is shown in cross-section in the following figure. Its
physical characteristics include the plate width w and the plate separation d.

L Conductar
Diekedric

T (onductar

L

h = rfckt.parallelplate returns a parallel-plate transmission line object whose
properties are set to their default values.

h = rfckt.parallelplate("Propertyl”,valuel, "Property2”,value2,...)
returns a parallel-plate transmission line object, h, with the specified properties.
Properties that you do not specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

6-153

6 Objects — Alphabetical List

6-154

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-156.

Data Types: function_handle

"EpsilonR" — Relative permittivity of dielectric
scalar

Relative permittivity of dielectric, specified as a comma separated pair consisting of
"EpsilonR™ and a scalar. The relative permittivity is the ratio of permittivity of the

dielectric, € , to the permittivity in free space, &;. The default value is 2.3.
Data Types: double

"LineLength™ — Physical length of parallel-plate transmission line
scalar in meters

Physical length of parallel-plate transmission line, specified as a comma separated pair
consisting of "LineLength” and a scalar in meters. The default value 1s 0.01.
Data Types: double

"LossTangent" — Tangent of loss angle of dielectric
scalar

Tangent of loss angle of dielectric, specified as a comma separated pair consisting of
"LossTangent® and a scalar. The default value is O.
Data Types: double

"MUR™ — Relative permeability of dielectric
scalar

Relative permeability of dielectric, specified as a comma separated pair consisting of
"MUR"™ and a scalar. The ratio of permeability of dielectric, i, to the permeability in free

space, Uy . The default value is 1.

Data Types: double

"Name® — Object name
"Parallel-Plate Transmission Line" (default) | 1-by-N character array

rickt.parallelplate class

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read-only property. The default value is 2.
Data Types: double

"Separation” — Thickness of dielectric
scalar in meters

Thickness of the dielectric separating the plates, specified as a comma separated pair
consisting of "Separation” and a scalar in meters. The default value is 1.0e-3.

Data Types: double

"SigmaCond" — Conductor conductivity
scalar in Siemens per meter

Conductor conductivity, specified as a comma separated pair consisting of *SigmaCond*”
and a scalar in Siemens per meter (S/m). The default value is InT.
Data Types: double

"StubMode™ — Type of stub
"NotaStub® (default) | "Series”™ | "Shunt”

Type of stub, specified as a comma separated pair consisting of "StubMode” and one of
the following values: "NotaStub®, "Series”, "Shunt”.

Data Types: double

"Termination™ — Stub transmission line termination
"NotApplicable® (default) | "Open*® | "Short”

Stub transmission line termination, specified as a comma separated pair consisting of
"Termination” and one of the following values: "NotaStub*®, "Series”, "Shunt”.

Data Types: double

6-155

6 Objects — Alphabetical List

"Width" — Physical width of parallel-plate transmission line
scalar in meters

Physical width of parallel-plate transmission line, specified as a comma separated pair
consisting of "Width" and a scalar in meters. The default value is 6 .0e-4.

Data Types: double
Methods

Examples

Parallel Plate Transmission Line
Create a parallel plate transmission line using rfckt.parallelplate.

txl=rfckt.parallelplate("LineLength®,0.045)

t~x1l =

rfckt.parallelplate with properties:

Width: 0.0050
Separation: 1.0000e-03
MuR: 1
EpsilonR: 2.3000

LossTangent: O
SigmaCond: Inf
LineLength: 0.0450
StubMode: “NotAStub*®
Termination: “NotApplicable*
nPort: 2
AnalyzedResult: []
Name: "Parallel-Plate Transmission Line~

Algorithms

The analyze method treats the parallel-plate line as a 2-port linear network and
models the line as a transmission line with optional stubs. The analyze method

6-156

rickt.parallelplate class

computes the AnalyzedResult property of the line using the data stored in the
rfckt.parallelplate object properties as follows:

If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The analyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

N ok 4 g hd
2
Zy * (ok e—kd)
B=
2
o okd _ gkd
2%7,
kd | -kd
D= e +e
2

Zy and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed in
terms of the resistance (R), inductance (L), conductance (G), and capacitance (C) per
unit length (meters) as follows:

;- [B+2mL
0 T ul ~ . o
G+ j2nfC

k =k, + jk =/(R +j21¥L)G +j21FC)

where

6-157

6 Objects — Alphabetical List

_ 2
wo—condSCond

L= ‘Lti
w

w

G — /I_

d
w
c=c%
“d

In these equations:

* wis the plate width.

+ d1is the plate separation.

* Ocona 18 the conductivity in the conductor.
1 1s the permeability of the dielectric.
€ 1s the permittivity of the dielectric.

"N —

+ ¢£"is the imaginary part of ¢, £” = gog,tan §, where:

* go1s the permittivity of free space.
* g,1s the EpsilonR property value.
* tan 6 is the LossTangent property value.
* Ocong 18 the skin depth of the conductor, which the block calculates as
1/\rfuc, . ,q -

+ f1is a vector of modeling frequencies determined by the Outport block.

+ If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt®, the 2-port network consists of a

stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

6-158

rickt.parallelplate class

[=]

3
[=]
[=]
3
[=]

Ei
4
5

Z;, 1s the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

When you set the StubMode property to "Series”, the 2-port network consists of a

series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o 4 o o 4
Zin | Zin |

]

Z;, 1s the input impedance of the series circuit. The ABCD-parameters for the series
stub are calculated as:

1
Zin
0
1

Daw»
I

6-159

6 Objects — Alphabetical List

6-160

The analyze method uses the parallel S-parameters to calculate the group delay values
at the frequencies specified in the analyze input argument freq, as described in the
analyze reference page.

References

Pozar, David M. Microwave Engineering, John Wiley & Sons, Inc., 2005.

See Also

rfckt.coaxial on page 6-75 | rfckt.cpw on page 6-83 | rfckt.microstrip on
page 6-134 | rfckt.rlcgline on page 6-165 | rfckt.twowire on page 6-189 |
rfckt.txline on page 6-197

rfckt.passive class

rfckt.passive class

Package: rfckt

Passive component or network

Syntax

h = rfckt.passive
h = rfckt.passive("Propertyl”,valuel, "Property2” ,value2,...)
Description

Use the passive class to represent passive RF components and networks that are
characterized by passive network parameter data.

h = rfckt.passive returns an passive-device object whose properties all have their
default values.

h = rfckt.passive("Propertyl”,valuel, "Property2” ,value2, . ..) returns
a circuit object, h, based on the specified properties. Properties that you do not specify
retain their default values.

Use the read method to read the passive object data from a Touchstone data file. When
you read S-parameter data into an rfckt.passive object, the magnitude of your Sy,
data must be less than or equal to 1.

Due to random numerical error, data measured from a passive device is not necessarily
passive. However, rfckt.passive objects can only contain passive data. To import
data with active regions, use the rfckt.amplifier object, even if the original data
represents a passive device.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

6-161

6 Objects — Alphabetical List

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-163.

Data Types: function_handle

"IntpType” — Interpolation method used in rfckt._passive
1-by-N character array

Interpolation method used in rfckt.passive, specified as a comma separated pair
consisting of " IntpType"® and 1-by-N character array of the following values:

Method Description

Linear (default) Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"NetworkData" — Network parameter data
rfdata.network object

Network parameter data, specified as a comma-separated pair consisting of
"NetworkData" and rfdata.network object.

Data Types: function_handle

"nport"” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double

6-162

rfckt.passive class

Methods

Examples

Passive RF Components

Create passive RF components using rfckt.passive.

pas = rfckt_passive("IntpType®, “cubic”)

pas =
rfckt.passive with properties:

IntpType: "Cubic*
NetworkData: [1x1 rfdata.network]
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
Name: "Passive®

Algorithms

The analyze method computes the AnalyzedResult property as follows:

The analyze method uses the data stored in the "NetworkData" property of the
rfckt.passive object to calculate the S-parameter values of the passive component at
the frequencies specified in freq. If the "NetworkData" property contains network Y-
or Z-parameters, the analyze method first converts the parameters to S-parameters.
Using the interpolation method you specify with the " IntpType" property, the analyze
method interpolates the S-parameter values to determine their values at the specified
frequencies.

Specifically, the analyze method orders the S-parameters according to the ascending
order of their frequencies, f,,. It then interpolates the S-parameters, using the MATLAB
interpl function. For example, the curve in the following diagram illustrates the result
of interpolating the S;; parameters at five different frequencies.

6-163

6 Objects — Alphabetical List

6-164

Interpolated S,, parameter values

LT ‘7 Original S, parameter values

f, 1, fy fs fy——— Frequencies in ascending
order of magnitude
(fmin) (fmax)

For more information, see “One-Dimensional Interpolation” and the interpl reference
page in the MATLAB documentation.

As shown in the preceding diagram, the analyze method uses the parameter values

at frin, the minimum input frequency, for all frequencies smaller than f,,;,. It uses the
parameters values at f,,q., the maximum input frequency, for all frequencies greater
than f,,... In both cases, the results may not be accurate, so you need to specify network
parameter values over a range of frequencies that is wide enough to account for the
component behavior.

The analyze method uses the S-parameters to calculate the group delay values at the
frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

References

EIA/IBIS Open Forum, Touchstone File Format Specification, Rev. 1.1, 2002 (https://
ibis.org/connector/touchstone_specll.pdf).

See Also

rfckt.amplifier on page 6-64 | rfckt._.datafile on page 6-90 | rfckt._mixer on
page 6-141 | rfdata.data on page 6-205 | rfdata.network on page 6-215 |
https://ibis.org/connector/touchstone_specl1.pdf

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

rickt.rlegline class

rfckt.rlcgline class

Package: rfckt

RLCG transmission line

Syntax

h = rfckt.rilcgline
h = rfckt.rlcgline("Propertyl®,valuel, "Property2” ,value2,...)
Description

Use the rlcgline class to represent RLCG transmission lines that are characterized by
line loss, line length, stub type, and termination.

h = rfckt.rlcgline returns an RLCG transmission line object whose properties are
set to their default values.

h = rfckt.rlcgline("Propertyl®,valuel, "Property2” ,value2, .. .) returns
an RLCG transmission line object, h, with the specified properties. Properties that you do
not specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-168.

Data Types: function_handle

"C" — Capacitance values per length
vector in farads per meter

6-165

6 Objects — Alphabetical List

6-166

Capacitance values per length, specified as a comma separated pair consisting of "C" and
a vector in farads per meter. The capacitance values correspond to the frequency values
in "Freq"” property. All values must be positive. The default value is O.

Data Types: double

"Freq" — Frequency data
M-element vector in Hz

Frequency data for the RLCG values, specified as a comma separated pair consisting of
"Freq” and M-element vector in Hz. The values must be positive and correspond to the
order of the RLCG values. The default value is 1e9.

Data Types: double

"G" — Conductance values per length
vector in Siemens per meter

Conductance values per length, specified as a comma separated pair consisting of "G*"
and vector in Siemens per meter. The conductance values correspond to the frequency
values in "Freq” property. All values must be positive. The default value is O.

Data Types: double

"IntpType” — Interpolation method used in rfckt._rlcgline
"Linear”® (default) | "Spline® | "Cubic”

Interpolation method used in rfckt.rlcgline, specified as a comma separated pair
consisting of " IntpType" and one of the following values:

Method Description

Linear Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation

Data Types: char

"L" — Inductance values per length
vector in henries per meter

Inductance values per length, specified as a comma separated pair consisting of "L " and
vector in henries per meter. The inductance values correspond to the frequency values in
"Freq” property. All values must be positive. The default value is O.

rickt.rlegline class

Data Types: double

"R" — Resistance values per length
vector in ohms per meter

Resistance values per length, specified as a comma separated pair consisting of "R" and
vector in ohms per meter. The resistance values correspond to the frequency values in
"Freq” property. All values must be positive. The default value is O.

Data Types: double

"LineLength® — Physical length of transmission line
scalar in meters

Physical length of transmission line, specified as a comma separated pair consisting of
"LineLength” and a scalar in meters. The default value is 0.01.

Data Types: double

"Name" — Object name
"RLCG Transmission Line" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name*® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports

positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a

positive integer. This is a read-only property. The default value is 2.

Data Types: double

"StubMode™ — Type of stub
"NotaStub"® (default) | "Series”™ | "Shunt”

Type of stub, specified as a comma separated pair consisting of *StubMode® and one of
the following values: "NotaStub®, "Series”, "Shunt”.

Data Types: double

"Termination™ — Stub transmission line termination
"NotApplicable” (default) | "Open” | "Short”

6-167

6 Objects — Alphabetical List

Stub transmission line termination, specified as a comma separated pair consisting of
"Termination” and one of the following values: "NotaStub”, "Series”, "Shunt".

Data Types: double

Methods

Examples

RLCG Transmission Line

Create an RLCG transmission line using rfckt.rlcgline.

rlcgtx=rfckt.rilcgline("R",0.002,"C",8.8542e-12,"L",1.2566e-6,"G",0.002%)

rlcgtx =

rfckt.ricgline with properties:

Freq:

R:

L:

C:

G:

IntpType:
LineLength:
StubMode:
Termination:
nPort:
AnalyzedResult:
Name:

Algorithms

.0000e+09
.0020
.2566e-06
.8542e-12
.0020
Linear”
0.0100
"NotAStub*
"NotApplicable*
2

1

"RLCG Transmission Line"

st O 00FOPr

The analyze method treats the transmission line, which can be lossy or lossless, as a
2-port linear network. It uses the interpolation method you specify in the IntpType

6-168

rickt.rlegline class

property to find the R, L, C, and G values at the frequencies you specify when you call
analyze. Then, it calculates the characteristic impedance, Z0, phase velocity, PV, and
loss using these interpolated values. It computes the AnalyzedResult property of a
stub or as a stubless line using the data stored in the rfckt.rlcgline object properties
as follows:

* If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The anallyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

N okd 4 ok
2
Z (et e
O Gl
2
. okd _ ghd
2%7,
kd , —kd
D= e +e
2

Zo and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed in
terms of the resistance (R), inductance (L), conductance (G), and capacitance (C) per
unit length (meters) as follows:

7 = R+ j21fL
0 Al ~ . ~orr
G+ j2nfC

k =k, + jk; =R +j21¥L)G +j21FC)

+ If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

6-169

6 Objects — Alphabetical List

6-170

When you set the StubMode property to "Shunt®, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

=]

;-
=]
=]

2
=]

Ei
4
5

Z;, 1s the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

When you set the StubMode property to "Series”, the 2-port network consists of a
series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o 4 o o 4 o
Zin | Zin |

Z;, 1s the input impedance of the series circuit. The ABCD-parameters for the series
stub are calculated as:

rickt.rlegline class

1
Zin
0
1

Saw»
I

The analyze method uses the S-parameters to calculate the group delay values at the

frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

See Also

rfckt.coaxial on page 6-75 | rfckt.cpw on page 6-83 | rfckt.microstrip on page
6-134 | rfckt.parallelplate on page 6-153 | rfckt._twowire on page 6-189 |
rfckt.txline on page 6-197

6-171

6 Objects — Alphabetical List

6-172

rfckt.series class

Package: rfckt

Series connected network

Syntax

h = rfckt.series
h = rfckt.series("Propertyl”,valuel, "Property2- ,value2,...)
Description

Use the series class to represent networks of linear RF objects connected in series that
are characterized by the components that make up the network. The following figure
shows a pair of networks in a series configuration.

O—1f 0

h = rfckt.series returns a series connected network object whose properties all have
their default values.

h = rfckt.series("Propertyl- ,valuel, "Property2”,value2,...) returns a
series connected network object, h, based on the specified properties. Properties that you
do not specify retain their default values.

rfckt.series class

Properties

"AnalyzedResult” — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-174.

Data Types: function_handle

Ckts — Circuit objects in network
cell array of object handles

Circuit objects in network, specified as a comma separated pair consisting of "Ckts*”
and a cell array of object handles. All circuits must be 2-port. By default, this property is
empty.

Data Types: char

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. By default, the value is 2.

Data Types: double

6-173

6 Objects — Alphabetical List

6-174

Methods

Examples

Series Connected RF Network Object

Create a series connected RF network object using rfckt.series

tx1l = rfckt.txline;

t~x2 = rfckt.txline;

ser = rfckt.series("Ckts”,{tx1l,tx2})
ser =

rfckt.series with properties:

Ckts: {[1x1 rfckt.txline] [1x1 rfckt.txline]}
nPort: 2

AnalyzedResult: []
Name: "Series Connected Network"”

Algorithms

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the Ckts property as follows:

1 The analyze method first calculates the impedance matrix of the series connected
network. It starts by converting each component network's parameters to an
impedance matrix. The following figure shows a series connected network consisting
of two 2-port networks, each represented by its impedance matrix,

rfckt.series class

(2]

[2']

where

[Z'] — %11' Z12' %
Hoi Zey H

I n |:

e %11 Z12 O

o1 Zos E

2 The analyze method then calculates the impedance matrix for the series network
by calculating the sum of the individual impedances. The following equation
illustrates the calculations for two 2-port circuits.

Zyy +2Zyy Zyg +Zyy

[Z] = [Z,] + [Z’] = 7 4 ’ 14
Zoy +Zgy Zgy +Zyg

3 Finally, analyze converts the impedance matrix of the series network to S-
parameters at the frequencies specified in the analyze input argument freq.

References

Ludwig, Reinhold and Pavel Bretchko, RF Circuit Design: Theory and Applications,
Prentice-Hall, 2000.

6-175

6 Objects — Alphabetical List

See Also

rfckt.cascade on page 6-70 | rfckt._hybrid on page 6-98 | rfckt.hybridg on page
6-102 | rfckt.parallel on page 6-148

6-176

rfckt.seriesrlc class

rfckt.seriesrlc class

Package: rfckt

Series RLC component

Syntax

h = rfckt.seriesrlc
h = rfckt.seriesrlc("R",Rvalue,"L",Lvalue,"C",Cvalue)

Description

Use the seriesrlc class to represent a component as a resistor, inductor, and capacitor
connected in series.

The series RLC network object is a 2-port network as shown in the following circuit
diagram.

-

h = rfckt.seriesrlc returns a series RLC network object whose properties all have
their default values. The default object is equivalent to a pass-through 2-port network,
1.e., the resistor, inductor, and capacitor are each replaced by a short circuit.

h = rfckt.seriesrlc("R",Rvalue, "L",Lvalue, "C",Cvalue) returns a series
RLC network object, h, based on the specified resistance (R), inductance (L), and
capacitance (C) values. Properties that you do not specify retain their default values,
allowing you to specify a network of a single resistor, inductor, or capacitor.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

6-177

6 Objects — Alphabetical List

6-178

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-181.

Data Types: function_handle

R — Resistance value
positive scalar in ohms

Resistance value, specified as a comma separated pair consisting of "R" and a positive
scalar in ohms. The default value is O.
Data Types: double

C — Capacitance valuve
positive scalar in farads

Capacitance value, specified as a comma separated pair consisting of "C" and a positive
scalar in farads. The default value is " Inf*~.
Data Types: double

L — Inductance value
positive scalar in henries

Inductance value, specified as a comma separated pair consisting of "L" and a positive
scalar in henries. The default value is O.
Data Types: double

"Name® — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. By default, the value is 2.

rfckt.seriesrlc class

Data Types: double
Methods

Examples

Frequency Response of an LC Resonator

This example creates a series LC resonator and examines its frequency response. It first
creates the circuit object and then uses the analyze method to calculate its frequency
response. Finally, it plots the results - first, the magnitude in decibels (dB):

h = rfckt.seriesrlc("L",4.7e-5,"C",2.2e-10);
analyze(h, logspace(4,8,1000));
plot(h,"s21","dB")

ax = gca;

ax.XScale = "log~;

6-179

6 Objects — Alphabetical List

Magnitude (decibels)

6-180

R
=]

1
(]
=

40

—"ED 1 i a3 aaal 1 1 1 L aaal 1 i a3 aaal
102 107! 100 10!
Freq [MHz]

The example then plots the phase, in degrees:

figure
plot(h,"s21","angle™)
ax = gca;

ax.XScale = "log~;

100

80

60

40

Angle (degrees)
o

-100 BE—

21

102 107!

Algorithms

100

Freq [MHz]

rfckt.seriesrlc class

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the rfckt.seriesrlc object properties by first calculating
the ABCD-parameters for the circuit, and then converting the ABCD-parameters to S-
parameters using the abcd2s function. For this circuit, A=1,B=7,C=0,and D=1,

where

P -LCo” + jRCo +1

JjCw

6-181

6 Objects — Alphabetical List

and o = 2mf.
The analyze method uses the S-parameters to calculate the group delay values at the

frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

References

Ludwig, Reinhold and Pavel Bretchko, RF Circuit Design: Theory and Applications,
Prentice-Hall, 2000.

See Also

rfckt.shuntrlc on page 6-183

6-182

rfckt.shuntrlc class

rfckt.shuntrlc class

Package: rfckt

Shunt RLC component

Syntax

h = rfckt._.shuntrlic
h = rfckt.shuntric("R",Rvalue, "L",Lvalue, "C",Cvalue)

Description

Use the shuntrlc class to represent a component as a resistor, inductor, and capacitor
connected in a shunt configuration.

The shunt RLC network object is a 2-port network as shown in the following circuit
diagram.

h = rfckt.shuntrlc returns a shunt RLC network object whose properties all have
their default values. The default object is equivalent to a pass-through 2-port network;
1.e., the resistor, inductor, and capacitor are each replaced by a short circuit.

h = rfckt.shuntric("R",Rvalue, "L",Lvalue, "C" ,Cvalue) returns a shunt RLC
network object, h, based on the specified resistance (R), inductance (L), and capacitance
(C) values. Properties that you do not specify retain their default values, allowing you to
specify a network of a single resistor, inductor, or capacitor.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

6-183

6 Objects — Alphabetical List

6-184

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-187.

Data Types: function_handle

R — Resistance value
positive scalar in ohms

Resistance value, specified as a comma separated pair consisting of "R" and a positive
scalar in ohms. The default value is O.
Data Types: double

C — Capacitance valuve
positive scalar in farads

Capacitance value, specified as a comma separated pair consisting of "C" and a positive
scalar in farads. The default value is " Inf*~.
Data Types: double

L — Inductance value
positive scalar in henries

Inductance value, specified as a comma separated pair consisting of "L" and a positive
scalar in henries. The default value is O.
Data Types: double

"Name® — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. By default, the value is 2.

rfckt.shuntrlc class

Data Types: double
Methods

Examples

Frequency Response of a Shunt LC Resonator

This example creates a shunt LC resonator and examines its frequency response. It first
creates the circuit object and then uses the analyze method to calculate its frequency
response. The plot is in decibels(dB).

h = rfckt.shuntric("L",4.7e-5,"C",2.2e-10);
analyze(h, logspace(4,8,1000));
plot(h,"s21","dB")

ax = gca;

ax.XScale = "log~;

6-185

6 Objects — Alphabetical List

Magnitude (decibels)

6-186

21

-20 — e
102 107" 10°
Freq [MHz]

The example then plots the phase, in degrees:

figure
plot(h,"s21","angle™)
ax = gca;

ax.XScale = "log~;

10!

rfckt.shuntrlc class

Angle (degrees)

100 —————————

21

60 N -

60 N

80
102 107! 100 10! 102
Freq [MHz]

Algorithms

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the rfckt.shuntrlc object properties by first calculating
the ABCD-parameters for the circuit, and then converting the ABCD-parameters to S-
parameters using the abcd2s function. For this circuit, A=1,B=0,C=Y,and D=1,
where

_-LCw® +j(L/ Rw +1
JjLo

Y

6-187

6 Objects — Alphabetical List

and o = 2mf.
The analyze method uses the S-parameters to calculate the group delay values at the

frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

References

Ludwig, Reinhold and Pavel Bretchko, RF Circuit Design: Theory and Applications,
Prentice-Hall, 2000.

See Also

rfckt.seriesrlc on page 6-177

6-188

rfckt.twowire class

rfckt.twowire class

Package: rfckt

Two-wire transmission line

Syntax

h = rfckt.twowire
h = rfckt.twowire("Propertyl-,valuel, "Property2” ,value2,...)

Description

Use the twowire class to represent two-wire transmission lines that are characterized by
line dimensions, stub type, and termination.

A two-wire transmission line is shown in cross-section in the following figure. Its physical
characteristics include the radius of the wires a, the separation or physical distance
between the wire centers S, and the relative permittivity and permeability of the wires.
RF Toolbox software assumes the relative permittivity and permeability are uniform.

Wires

-+— Dielectric

A
%)
—

h = rfckt.twowire returns a two-wire transmission line object whose properties are
set to their default values.

6-189

6 Objects — Alphabetical List

6-190

h = rfckt.twowire("Propertyl” ,valuel, "Property2* ,value2, ...) returns a
two-wire transmission line object, h, with the specified properties. Properties that you do
not specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-192.

Data Types: function_handle

"EpsilonR™ — Relative permittivity of dielectric
scalar

Relative permittivity of dielectric, specified as a comma separated pair consisting of
"EpsilonR™ and a scalar. The relative permittivity is the ratio of permittivity of the

dielectric, € , to the permittivity in free space, &;. The default value is 2. 3.
Data Types: double

"LineLength” — Physical length of transmission line
scalar in meters

Physical length of transmission line, specified as a comma separated pair consisting of
"LineLength” and a scalar in meters. The default value is 0.01.

Data Types: double

"LossTangent” — Tangent of loss angle of dielectric
scalar

Tangent of loss angle of dielectric, specified as a comma separated pair consisting of
"LossTangent” and a scalar. The default value is O.

Data Types: double

"MUR" — Relative permeability of dielectric
scalar

rfckt.twowire class

Relative permeability of dielectric, specified as a comma separated pair consisting of
"MUR™ and a scalar. The ratio of permeability of dielectric, u , to the permeability in free

space, Uy . The default value is 1.
Data Types: double

"Name" — Object name
"Two-Wire Transmission Line" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name*® and 1-by-N
character array. This is a read-only property.

Data Types: char

"nport” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of *nport” and a
positive integer. This is a read-only property. The default value is 2.

Data Types: double

"Radius” — Conducting wire radius
scalar in meters

Conducting wire radius, specified as a comma separated pair consisting of "Radius” and

a scalar in meters. The default value 1s 6.7e-4.

Data Types: double

"SigmaCond™ — Conductor conductivity
scalar in Siemens per meter

Conductor conductivity, specified as a comma separated pair consisting of *SigmaCond*”
and a scalar in Siemens per meter (S/m). The default value is InT.

Data Types: double

"StubMode™ — Type of stub
"NotaStub” (default) | "Series”™ | "Shunt”

Type of stub, specified as a comma separated pair consisting of "StubMode® and one of
the following values: "NotaStub”, "Series”, "Shunt”.

Data Types: double

6-191

6 Objects — Alphabetical List

*Termination™ — Stub transmission line termination
"NotApplicable® (default) | "Open® | "Short*

Stub transmission line termination, specified as a comma separated pair consisting of
"Termination” and one of the following values: "NotaStub*®, "Series”, "Shunt”.

Data Types: double

Methods

Examples

Two-Wire Transmission Line
Create a two-wire transmission line object using rfckt.twowire.

txl=rfckt_twowire("Radius”,7.5e-4)

t~1l =

rfckt.twowire with properties:

Radius: 7.5000e-04
Separation: 0.0016
MuR: 1
EpsilonR: 2.3000
LossTangent: O

SigmaCond: Inf
LineLength: 0.0100
StubMode: “NotAStub*®
Termination: “NotApplicable®
nPort: 2
AnalyzedResult: []
Name: "Two-Wire Transmission Line*

Algorithms

+ If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling

6-192

rfckt.twowire class

frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The anallyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

Azekd+e—kd
2
ZO*(ekd —kd)
B:
2
C_ekd_e—kd
2%7,
b ok 4 ,—hd
2

Zo and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed in
terms of the resistance (R), inductance (L), conductance ((), and capacitance (C) per
unit length (meters) as follows:

_ [R+j2nL
G+ j2ifC

k=k, +jk =(R +j21¥LXG + j21FC)

0

where

6-193

6 Objects — Alphabetical List

6-194

R = ;
a0 condScond
L= Ea cosh (ﬂj
T 2a
G- nwe”
2]
acosh| —
2a
C- e =
acosh(j
2a

In these equations:

* wis the plate width.
* d 1s the plate separation.
Ocond 18 the conductivity in the conductor.
* 1 1s the permeability of the dielectric.
* £1s the permittivity of the dielectric.

"N —

+ &£"is the imaginary part of ¢, £” = gog,tan §, where:

* &0 1s the permittivity of free space.
* g.1s the EpsilonR property value.
* tan § is the LossTangent property value.

* Oeong 18 the skin depth of the conductor, which the block calculates as

1/\nfuc . ,q -

f1is a vector of modeling frequencies determined by the Outport block.

If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt”, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

rfckt.twowire class

[=]

3
[=]
[=]
3
[=]

Ei
4
5

Z;, 1s the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

When you set the StubMode property to "Series”, the 2-port network consists of a

series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o 4 o o 4
Zin | Zin |

]

Z;, 1s the input impedance of the series circuit. The ABCD-parameters for the series
stub are calculated as:

1
Zin
0
1

Daw»
I

6-195

6 Objects — Alphabetical List

References

Pozar, David M. Microwave Engineering, John Wiley & Sons, Inc., 2005.

See Also

rfckt.coaxial on page 6-75 | rfckt.cpw on page 6-83 | rfckt.microstrip on page
6-134 | rfckt._parallelplate on page 6-153 | rfckt._rlcgline on page 6-165 |
rfckt.txline on page 6-197

6-196

rfckt.ixline class

rfckt.txline class

Package: rfckt

General transmission line

Syntax

h = rfckt.txline
h rfckt.txline("Propertyl®,valuel, "Property2”,value2,...)

Description

Use the txline class to represent transmission lines that are characterized by line loss,
line length, stub type, and termination.

h = rfckt.txline returns a transmission line object whose properties are set to their
default values.

h = rfckt.txline("Propertyl®,valuel, "Property2” ,value2, ...) returns
a transmission line object, h, with the specified properties. Properties that you do not
specify retain their default values.

Properties

"AnalyzedResult™ — Computed S-parameters, noise figure, OIP3, and group delay values
rfdata.data object

Computed S-parameters, noise figure, OIP3, and group delay values, specified as a
comma-separated pair consisting of "AnalyzedResult” and rfdata.data object. This is a
read-only property. For more information refer, “Algorithms” on page 6-201.

Data Types: function_handle

"Freq" — Frequency data
M-element vector in Hz

6-197

6 Objects — Alphabetical List

6-198

Frequency data for the RLCG values, specified as a comma separated pair consisting of
"Freq” and M-element vector in Hz. The values must be positive and correspond to the
order of loss and phase velocity values. By default, this property is empty.

Data Types: double

"IntpType” — Interpolation method used in rfckt_rlcgline
"Linear”® (default) | "Spline® | "Cubic"”

Interpolation method used in rfckt.rlcgline, specified as a comma separated pair
consisting of " IntpType® and one of the following values:

Method Description

Linear Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation

Data Types: char

"LineLength” — Physical length of transmission line
scalar in meters

Physical length of transmission line, specified as a comma separated pair consisting of
"LineLength® and a scalar in meters. The default value is 0.01.
Data Types: double

"Loss" — Reduction in strength of signal
O (default) | nonnegative M-element vector in decibels per meter

Reduction in strength of signal as it travels through the transmission line, specified
as a comma-separated pair consisting of *Loss" and nonnegative M-element vector in
decibels per meter.

Data Types: double

"Name" — Object name
"Transmission Line" (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

rfckt.ixline class

Data Types: char

"nport"” — Number of ports
positive integer

Number of ports, specified as a comma-separated pair consisting of "nport” and a
positive integer. This is a read-only property. The default value is 2.
Data Types: double

"PV" — Phase velocity
M-element vector in meters/sec

Phase velocity or propagation velocity of a uniform plane wave on the transmission line,
specified as a comma-separated pair consisting of "PV" and M-element vector in meters/
sec. The phase velocity values correspond to the frequency values. The default value is
299792458.

Data Types: double

"StubMode™ — Type of stub
"NotaStub” (default) | "Series”™ | "Shunt”

Type of stub, specified as a comma separated pair consisting of "StubMode® and one of
the following values: "NotaStub”, "Series”, "Shunt”.
Data Types: double

"*Termination” — Stub transmission line termination
"NotApplicable® (default) | "Open® | "Short*

Stub transmission line termination, specified as a comma separated pair consisting of
"Termination” and one of the following values: "NotaStub”, "Series”, "Shunt".

Data Types: double

"Z0" — Characteristic impedance
vector 1n ohms

Characteristic impedance, specified as a comma separated pair consisting of *Z0" and
vector in ohms. The default value is 50 ohms.

Data Types: double

6-199

6 Objects — Alphabetical List

6-200

Methods

Examples

Frequency Domain Analysis of a Transmission Line

Transmission Line Properties

trl = rfckt.txline("z0",75)

trl =

rfckt_txline with properties:

LineLength:
StubMode:
Termination:
Freq:

Z0:

PV:

Loss:
IntpType:
nPort:
AnalyzedResult:
Name:

Plot

f = [1e9:1.0e7:3e9];

analyze(trl,f);
figure

0.0100
"NotAStub*®
"NotApplicable*
1.0000e+09

75

299792458

0

"Linear”

2

[1

"Transmission Line"

% Simulation frequencies
% Do frequency domain analysis

plot(trl,"s21","angle”); % Plot angle of S21

rfckt.ixline class

Angle (degrees)

21

_4 D i i i i i i i i i
1 1.2 1.4 1.6 1.8 2 2.2 24 26 28 3

Freq [GHZz]

Algorithms

The analyze method treats the transmission line, which can be lossy or lossless, as a 2-
port linear network. It computes the AnalyzedResul t property of a stub or as a stubless
line using the data stored in the rfckt.txline object properties as follows:

+ If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

6-201

6 Objects — Alphabetical List

6-202

The analyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

A ekd + e—kd
B 2
ZO * ekd —kd
O
2
o ohd _ gk
2%Z,
Do ekd + e—kd
2

Zy 1s the specified characteristic impedance. k is a vector whose elements correspond
to the elements of the input vector freq. The analyze method calculates k from the
specified properties as k = a, + i, where q, is the attenuation coefficient and S is the
wave number. The attenuation coefficient a, is related to the specified loss, a, by

o =-1n(10%/20)

a

The wave number £ is related to the specified phase velocity, V,, by
2n
B= V_f’
p

where fis the frequency range specified in the analyze input argument freq. The
phase velocity V), is derived from the rfckt. txline object properties. It is also
known as the wave propagation velocity.

If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

rfckt.ixline class

When you set the StubMode property to "Shunt®, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

=]

;-
=]
=]

2
=]

Ei
4
5

Z;, 1s the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

When you set the StubMode property to "Series”, the 2-port network consists of a
series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o 4 o o 4 o
Zin | Zin |

Z;, 1s the input impedance of the series circuit. The ABCD-parameters for the series
stub are calculated as:

6-203

6 Objects — Alphabetical List

Saw»>
Lo

References

Ludwig, R. and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall,
2000.

See Also

rfckt.coaxial on page 6-75 | rfckt.cpw on page 6-83 | rfckt.microstrip on page
6-134 | rfckt._parallelplate on page 6-153 | rfckt._.rlcgline on page 6-165 |
rfckt.twowire on page 6-189

6-204

rfdata.data class

rfdata.data class

Package: rfdata

Store result of circuit object analysis

Syntax

h = rfdata.data
h = rfdata.data("Propertyl”,valuel, "Property2”,value2,...)

Description

Use the data class to store S-parameters, noise figure in decibels, and frequency-
dependent, third-order output (OIP3) intercept points.

There are three ways to create an rfdata.data object:

* You can construct it by specifying its properties from workspace data using the
rfdata.data constructor.
* You can create it from file data using the read method.

* You can perform frequency domain analysis of a circuit object using the analyze
method, and RF Toolbox software stores the results in an rfdata.data object.

h

rfdata.data returns a data object whose properties all have their default values.

h = rfdata.data("Propertyl”,valuel, "Property2” ,value2, ...) returns a
data object, h, based on the specified properties. Properties that you do not specify retain
their default values.

Use the read method to read data from a file.

Properties

"Freq" — Frequency data for S-parameters
M-element vector in hertz

6-205

6 Objects — Alphabetical List

6-206

Frequency data for the S-parameters in the S—-Parameters property, specified as a
comma-separated pair consisting of "Freq” and M-element vector in hertz. The values
must be positive and correspond to the order of the S-parameters. By default, this
property is empty.

Data Types: double

"GroupDelayData” — Group delay data
M-element vector in seconds

Group delay data calculated at each frequency, specified as a comma-separated pair
consisting of "GroupDelayData” and M-element vector in seconds. By default, this
property is empty.

Data Types: double

"IntpType" — Interpolation method used in rfdata.data
1-by-N character array

Interpolation method used in rfdata.data, specified as a comma separated pair
consisting of " IntpType" and 1-by-N character array of the following values:

Method Description

Linear (default) Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation

Data Types: char

"Name™ — Object name

1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"NF" — Noise figure

scalar in dB

Noise figure, specified as a comma-separated pair consisting of *NF" and a scalar in dB.
"NF*" is the amount of noise relative to noise temperature of 290 degrees kelvin. The
default value is zero indicating a noiseless system.

rfdata.data class

Data Types: function_handle

"OIP3" — Output third-order intercept
scalar in watts

Output third-order intercept, specified as a comma-separated pair consisting of "O1P3"
and a scalar in watts. This property represents the hypothetical output signal level at
which the third-order tones would reach the same amplitude level as the desired input
tones. The default value is InF.

Data Types: double

"S_Parameters” — S-parameter data
2-by-2-by-M array

S-parameter data, specified as a comma-separated pair consisting of *S_Parameters”
and 2-by-2-by-M array. M is the number of frequencies at which the network
parameters are specified. By default, this property is empty.

Data Types: double

"Z0" — Reference impedance

scalar in ohms

Reference impedance, specified as a comma-separated pair consisting of *Z0" and a
scalar in ohms. The default value is 50 ohms.

Data Types: double

"ZL" — Load impedance
scalar in ohms

Load impedance, specified as a comma-separated pair consisting of *ZL" and a scalar in
ohms. The default value is 50 ohms.

Data Types: double

"ZS" — Source impedance
scalar in ohms

Source impedance, specified as a comma-separated pair consisting of "ZL" and a scalar
in ohms. The default value is 50 ohms.

Data Types: double

6-207

6 Objects — Alphabetical List

Methods

Examples

RF Data Object From a .s2p Data File

file = "default.s2p”;
h = read(rfdata.data,file); % Read file into data object.

figure
plot(h,"s21","db"); % Plot dB(S21) in XY plane.

6-208

rfdata.data class

N

21

3
=]
T
1

=4
[m-s]
T
e
i

—
=2}
T
1

=
B
T
-\'“"ﬂ-\..._______
i

Magnitude (decibels)
¥

2 i i i i i i i i i
1 1.2 1.4 1.6 1.8 2 2.2 24 26 28 3

Freq [GHZz]

See Also

rfdata. ip3 on page 6-210 | rfdata.mixerspur on page 6-213 |
rfdata.network on page 6-215 | rfdata.nf on page 6-218 | rfdata.noise on
page 6-220 | rfdata.power on page 6-223

6-209

6 Objects — Alphabetical List

6-210

rfdata.ip3 class

Package: rfdata

Store frequency-dependent, third-order intercept points

Syntax
h = rfdata.ip3
h = rfdata.ip3("Type”,valuel, "Freq”,value2, "Data”,value3)

Description
Use the ip3 class to store third-order intercept point specifications for a circuit object.

h = rfdata.ip3 returns a data object for the frequency-dependent IP3, h, whose
properties all have their default values.

h = rfdata.ip3("Type",valuel, "Freq”,value2, "Data” ,value3) returnsa
data object for the frequency-dependent IP3, h, based on the specified properties.

Note: If you set NonLinearData using rfdata. ip3 or rfdata.power, then the
property is converted from scalar OIP3 format to the format of rfdata. ip3 or
rfdata.power.

Properties

"Data" — Third-order intercept values
M-element vector in watts

Third-order intercept values, specified as a comma-separated pair consisting of "Data”
and M-element vector in watts. The values correspond to the frequencies stored in the
"Freq” property. The default value is " Inf".

Data Types: double

rfdata.ip3 class

"Freq” — Frequency data
M-element vector in hertz

Frequency data , specified as a comma-separated pair consisting of "Freq” and M-
element vector in hertz. The values must be positive and correspond to the order of the
IP3 values. By default, this property is empty.

Data Types: double

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"Type" — IP3 data type
"OIP3" (default) | *11P3"

IP3 data type, specified as a comma-separated pair consisting of "Type" and "0IP3" or
"11P3".

Data Types: double

Examples

Store Third-Order Intercept Point Specifications

Create an object to store third-order intercept point specifications using rfdata. ip3.

ip3data = rfdata.ip3("Type®","0IP3","Freq”,2.1e9, "Data”,8.45)

ip3data

rfdata.ip3 with properties:

Type: “OIP3*

Freqg: 2.1000e+09

Data: 8.4500

Name: "3rd order intercept”

6-211

6 Objects — Alphabetical List

See Also

rfdata.data on page 6-205 | rfdata.mixerspur on page 6-213 |

rfdata.network on page 6-215 | rfdata.nf on page 6-218 | rfdata.noise on
page 6-220 | rfdata.power on page 6-223

6-212

rfdata.mixerspur class

rfdata.mixerspur class

Package: rfdata

Store data from intermodulation table

Syntax

h = rfdata.mixerspur
h = rfdata.mixerspur("Data",valuel, "PLORef" ,value2, "PinRef", "valuel)
Description

Use the mixerspur class to store mixer spur power specifications for a circuit object.

h = rfdata.mixerspur returns a data object that defines an intermodulation table, h,
whose properties all have their default values.

h = rfdata.mixerspur(“Data”,valuel, "PLORef" ,value2, "PinRef", "value3l)
returns a data object that defines an intermodulation table, h, based on the specified
properties.

Properties

"Data” — Mixer spur power values
matrix

Mixer spur power values, specified as a comma-separated pair consisting of "Data”
and a matrix in decibels. The values are such that the mixer spier power is less than
the power at the fundamental output frequency. Values must be between O and 99. By
default, this property is empty.

Data Types: double

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This property is a read-only.

6-213

6 Objects — Alphabetical List

Data Types: char

"PinRef" — Reference input power
scalar in decibels

Reference input power, specified as a comma-separated pair consisting of "PinRef" and
a scalar in decibels relative to 1 milliwatt. The default value is O.

Data Types: double

"PLORef" — Reference local oscillator power
scalar in decibels

Reference local oscillator power, specified as a comma-separated pair consisting of
"PLORef" and a scalar in decibels relative to 1 milliwatt. The default value is O.

Data Types: double

Examples

Store Mixer Spur Power Specifications

Create an object to store mixer spur power specifications using rfdata.mixerspur.

spurs = rfdata.mixerspur(“Data®,[2 5 3; 1 0 99; 10 99 99], ...
"PinRef",3, "PLORef",5)

spurs =

rfdata.mixerspur with properties:

PLORef: 5
PinRef: 3
Data: [3x3 double]
Name: "Intermodulation table”

See Also

Visualizing Mixer Spurs | rfdata.data on page 6-205 | rfdata. ip3 on page 6-210 |
rfdata.network on page 6-215 | rfdata.nf on page 6-218 | rfdata.noise on
page 6-220 | rfdata.power on page 6-223

6-214

rfdata.network class

rfdata.network class

Package: rfdata

Store frequency-dependent network parameters

Syntax

h = rfdata.network
h = rfdata.network("Type*®,valuel, "Freq”,value2, Data",value3,
"Z0" ,valued)

Description

Use the network class to store frequency-dependent S-, Y-, Z-, ABCD-, H-, G-, or T-
parameters for a circuit object.

h = rfdata.network returns a data object for the frequency-dependent network
parameters h, whose properties all have their default values.

h = rfdata.network("Type~,valuel, "Freq”,value2, Data",value3,
"Z0" ,valued) returns a data object for the frequency-dependent network parameters,
h, based on the specified properties.

Properties

"Data” — Network parameter data
2-by-2-by-M array

Network parameter data, specified as a comma-separated pair consisting of "Data”
and 2-by-2-by-M array. M is the number of frequencies. The values correspond to the
frequencies stored in the "Freq" property. By default, this property is empty.

Data Types: double

"Freq” — Frequency data
M-element vector in hertz

6-215

6 Objects — Alphabetical List

Frequency data , specified as a comma-separated pair consisting of "Freq” and M-
element vector in hertz. The values must be positive and correspond to the order of the
IP3 values. By default, this property is empty.

Data Types: double

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.
Data Types: char

"Type" — Type of network parameters
ISI | IYI | IZI | IABCDI | IHI | IGI | ITI

Type of network parameters, specified as a comma-separated pair consisting of " Type*”
and one of the following network parameters:

. =g"
. my"
. w7"
- "ABCD"
. "H"
. "G"
.o T

Data Types: double

"Z0" — Reference impedance
scalar in ohms

Reference impedance, specified as a comma-separated pair consisting of *Z0" and a
scalar in ohms. This property is only available when the "Type”© is set to *S". The
default value is 50 ohms.

Data Types: double

6-216

rfdata.network class

Examples

Store Frequency-Dependant RF Network Parameters.

Create an object to store frequency-dependant Y-parameters using rfdata.network.

f = [2.08
y(:,:,1) =

y(:,:,2)

y(:,:,3)

rfda

net

2.10 2.15]*1.0e9;
[-.0090-.0104i, .0013+.0018i;
- .2947+.2961i, .0252+.0075i];
[-.0086-.0047i, .0014+.0019i;
-.3047+.3083i, .0251+.0086i];
[-.0051+.0130i, .0017+.0020i;
-.3335+.3861i, .0282+.0110i];

ta.network. ..

("Type","Y_PARAMETERS", "Freq",f, "Data”,y)

net =

rfdata.network with properties:

Type: "Y_PARAMETERS"

Freq: [3x1 double]

Data: [2x2x3 double]

Z0: 50.0000 + 0.0000#

Name: "Network parameters”
See Also
rfdata.data on page 6-205 | rfdata. ip3 on page 6-210 | rFdata.mixerspur

on page 6-213 | rfdata.nf on page 6-218 | rfdata.noise on page 6-220 |
rfdata.power on page 6-223

6-217

6 Objects — Alphabetical List

6-218

rfdata.nf class

Package: rfdata

Store frequency-dependent noise figure data for amplifiers or mixers

Syntax

h = rfdata.nf
h rfdata.nf("Freq”,valuel, "Data”,value2)

Description
Use the nF class to store noise figure specifications for a circuit object.

h = rfdata.nf returns a data object for the frequency-dependent noise figure, h, whose
properties all have their default values.

h = rfdata.nf("Freq”,valuel, "Data”,value2) returns a data object for the
frequency-dependent noise figure, h, based on the specified properties.

Properties

"Data” — Noise figure values
M-element vector in dB

Noise figure values, specified as a comma-separated pair consisting of "Data” and M-
element vector in dB. The values correspond to the frequencies stored in the "Freq*®
property. The default value is O.

Data Types: double

"Freq" — Frequency data
M-element vector in hertz

Frequency data , specified as a comma-separated pair consisting of "Freq” and M-
element vector in hertz. The values must be positive and correspond to the order of the
noise figure values. By default, this property is empty.

rfdata.nf class

Data Types: double

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

Examples

Store Noise Figure Specifications of RF Circuit Object.

Create an object to store noise figure specifications using rfdata.nf.

f = 2.0e9;
nf = 13.3244;
nfdata = rfdata.nf("Freq”,f, "Data”,nf);

See Also

rfdata.data on page 6-205 | rfdata. ip3 on page 6-210 | rfdata.mixerspur on
page 6-213 | rfdata.network on page 6-215 | rfdata.noise on page 6-220 |
rfdata.power on page 6-223

6-219

6 Objects — Alphabetical List

rfdata.noise class

Package: rfdata

Store frequency-dependent spot noise data for amplifiers or mixers

Syntax

h rfdata.noise
h = rfdata.noise("Freq”,valuel, "FMIN" ,value2, "GAMMAOPT",
value3, "RN*" ,value4d)

Description
Use the noise class to store spot noise specifications for a circuit object.

h = rfdata.noise returns a data object for the frequency-dependent spot noise, h,
whose properties all have their default values.

h = rfdata.noise("Freq”,valuel, "FMIN® ,value2, "GAMMAOPT",
value3, "RN",valued) returns a data object for the frequency-dependent spot noise, h,
based on the specified properties.

Properties

"FMIN® — Minimum noise figure data
M-element vector in dB

Noise figure values, specified as a comma-separated pair consisting of “FMIN™ and M-
element vector in dB. . The values correspond to the frequencies stored in the "Freq*”
property. By default, the value is 1.

Data Types: double

"Freq” — Frequency data
M-element vector in hertz

6-220

rfdata.noise class

Frequency data , specified as a comma-separated pair consisting of "Freq” and M-
element vector in hertz. The values must be positive and correspond to the spot noise
data in "FMIN™®, "GAMMAOPT", and "RN" properties. By default, this property is empty.

Data Types: double

"GAMMAOPT " — Optimum source reflection coefficients
M-element vector in hertz

Optimum source reflection coefficients , specified as a comma-separated pair consisting
of "GAMMAOPT " and M-element vector. The values correspond to the frequencies stored in
the "Freq” property. The default value is 1.

Data Types: double

"Name" — Object name
1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char

"RN" — Equivalent normalized noise resistance data
M-element vector in hertz

Equivalent normalized noise resistance data, specified as a comma-separated pair
consisting of "RN" and M-element vector. The values correspond to the frequencies stored
in the "Freq” property. The default value is 1.

Data Types: double

Examples

Store Spot Noise Specifications of RF Circuit Object.

Create an object to store spot noise specifications using rfdata.noise.

f = [2.08 2.10]*1.0e9;

fmin = [12.08 13.40];

gopt = [0.2484-1.2102j 1.0999-0.9295j];

rn = [0.26 0.45];

noisedata = rfdata.noise("Freq”,f,"FMIN®,fmin, ...

6-221

6 Objects — Alphabetical List

"GAMMAOPT " ,gopt, "RN", rn)

noisedata =
rfdata.noise with properties:

Freq: [2x1 double]
Fmin: [2x1 double]
GammaOPT: [2x1 double]
RN: [2x1 double]

Name: "Spot noise data“

See Also

rfdata.data on page 6-205 | rfdata.mixerspur on page 6-213 | rfdata.network
on page 6-215 | rfdata.nf on page 6-218 | rfdata.power on page 6-223

6-222

rfdata.power class

rfdata.power class

Package: rfdata

Store output power and phase information for amplifiers or mixers

Syntax

h = rfdata.power
h rfdata.power(propertyl® ,valuel, "property2” ,value2,...)

Description
Use the power class to store output power and phase specifications for a circuit object.

h = rfdata.power returns a data object for the Pin/Pout power data, h, whose
properties all have their default values.

h = rfdata.power(propertyl® ,valuel, "property2”,value2,...) returns a
data object for the Pin/Pout power data, h, based on the specified properties.

Properties

"Freq” — Frequency data
M-element vector in hertz

Frequency data , specified as a comma-separated pair consisting of "Freq” and M-
element vector in hertz. The values must be positive and correspond to the power data in
"Phase”, "Pin", and "Pout” properties. The order of frequencies is equal to the order of
the phase and power values. By default, this property is empty.

Data Types: double

"Name® — Object name
"Power data® | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

6-223

6 Objects — Alphabetical List

6-224

Data Types: char

"Phase” — Phase shift data
M-element cell in degrees

Phase shift data, specified as a comma-separated pair consisting of "Phase” and M-
element cell in degrees. . The values correspond to the frequencies stored in the "Freq*®
property. The values within each element correspond to the input power values stored in
the "Pin” property. The default value is 1.

Data Types: double

"Pin" — Input power data
M-element cell in watts

Input power data , specified as a comma-separated pair consisting of "Pin" and M-
element vector cell in watts. The values correspond to the frequencies stored in the
"Freq” property. For example,

P, = [AL[BIICI;

where A, B, and C are column vectors that contain the first three frequencies stored in the
"Freq" property.

The default value is 1.
Data Types: double

"Pout” — Output power data
M-element vector in watts

Output power data, specified as a comma-separated pair consisting of "Pout® andM-
element vector in watts. The values correspond to the frequencies stored in the "Freq”
property. The values within each element correspond to the input power values stored in
the "Pin” property. The default value is 1.

Data Types: double

Examples

Store Output Power and Phase Specifications of RF Circuit Object.

Create an object to store output power and phase specifications using rfdata.power.

rfdata.power class

f = [2.08 2.10]*1.0e9;

phase = {[27.1 35.3],[15-4 19.3 21.1]1};

pin = {[0.001 0.002],[0-001 0.005 0.011};

pout = {[0.0025 0.0031],[0.0025 0.0028 0.0028]};
= rfdata.power

powerdata
powerdata
powerdata
powerdata
powerdata

powerdata

rfdata.power with properties:

Freq:
Pin:
Pout:
Phase:
Name:

.Freq = T;

-Phase = phase;

-Pin = pin;

-Pout = pout;

L1
{[1 101}
{[1 101}
{3

See Also

rfdata.data on page 6-205 | rfdata. ip3 on page 6-210 | rfdata.mixerspur
on page 6-213 | rfdata.network on page 6-215 | rfdata.nf on page 6-218 |

rfdata.noise on page 6-220

"Power data”

6-225

6 Objects — Alphabetical List

6-226

rfmodel.rational class

Package: rfmodel

Rational function object

Syntax

h = rfmodel.rational
h = rfmodel .rational ("Propertyl”,valuel, "Property2*® ,value2,...)
Description

Use the rational class to represent RF components using a rational function object of
the form

He G O _ .
F(S)_@;s—Ak +D§ sr, S—]2Tf

There are two ways to construct an rational function object:

* You can fit a rational function object to the component data using the rationalfit
function.

* You can use the rfmodel . rational constructor to specify the pole-residue
representation of the component directly.

h = rfmodel.rational returns a rational function object whose properties are set to
their default values.

h = rfmodel.rational ("Propertyl”,valuel, "Property2” ,value2,...)
returns a rational function object, h, with the specified properties. Properties that you do
not specify retain their default values.

Properties

"A" — Poles of rational function object
complex vector in radians/second

rfmodel.rational class

Poles of rational function object, specified as a comma-separated pair consisting of A"
and complex vector in radians/second. The property length is shown in:

EE G J _ .
F(S)_@;s—Ak +D§ sr, S—J2Tf

where, n must be equal to the length of the vector you provide for "C". n is the number of
poles in the rational function object. By default, this property is empty.

Data Types: double

"C" — Residues of rational function object
complex vector in radians/second

Residues of the rational function object, specified as a comma-separated pair consisting of
"C" and complex vector in radians/second. The property length is shown in

F(s):Di Cr +DD‘ST s = j2rf
%z:ls_Ak % ,

as n, must be equal to the length of the vector you provide for "A". n is the number of
residues in the rational function object. By default, this property is empty.

Data Types: double

"D" — Frequency response offset
scalar

Frequency response offset, specified as a comma separated pair consisting of "D" and a
scalar. The default value is O.
Data Types: double

"Delay" — Frequency response time delay
scalar

Frequency response time delay, specified as a comma separated pair consisting of
"Delay” and a scalar. The default value is O.

Data Types: double

6-227

6 Objects — Alphabetical List

"Name" — Object name
"Rational Function® (default) | 1-by-N character array

Object name, specified as a comma-separated pair consisting of "Name® and 1-by-N
character array. This is a read-only property.

Data Types: char
Methods

Examples

Fit a Rational Function to Data
Fit a rational function to data from an rfdata.data object.
S = sparameters(“defaultbandpass.s2p™);
freq = S.Frequencies;
data = rfparam(S,2,1);
fit = rationalfit(freq,data)
fit =
rfmodel .rational with properties:
A: [10x1 double]
C: [10x1 double]
D: O
Delay: O
Name: "Rational Function®

Define, Evaluate and Visualize a Rational Function

Construct a rational function object, rat, with poles at -4 Mrad/s, -3 Grad/s,and -5 Grad/s
and residues of 600 Mrad/s,2 Grad/s and 4 Grad/s.

rat=rfmodel .rational ("A",[-5€9,-3e9,-4e6],"C",[6€8,2e9,4e9]);

Perform frequency-domain analysis from 1.0 MHz to 3.0 GHz.

6-228

rfmodel.rational class

Magnitude (dB)

f = [1e6:1.0e7:3e9];

Plot the resulting frequency response in decibels on the X-Y plane.

[resp,freq]=Ffreqresp(rat,f);

figure
plot(freq/1e9,20*1ogl0(abs(resp))):
xlabel ("Frequency (GHz)")

ylabel ("Magnitude (dB)")

60 T T T

50

Z‘-Dll'

20

of \

10 1 1 1 1 1 —

0 05 1 15 2 25
Frequency (GHz)

6-229

6 Objects — Alphabetical List

AnalyzedResult property

Class: rfckt.amplifier
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. The default is a 1-by-1 rfdata.data object that contains the S-parameters,
noise figure, OIP3, and group delay values that result from analyzing the values stored
in the default.amp file at the frequencies stored in this file.

The analyze method computes the AnalyzedResult property using the data stored in
the rfckt.amplifier object properties as follows:

* The analyze method uses the data stored in the "NoiseData” property of the
rfckt.amplifier object to calculate the noise figure.

* The analyze method uses the data stored in the "NonlinearData" property of the
rfckt.amplifier object to calculate OIP3.

If power data exists in the "NonlinearData" property, the block extracts the AM/
AM and AM/PM nonlinearities from the power data.

If the "NonlinearData" property contains only IP3 data, the method computes and
adds the nonlinearity by:

1 Using the third-order input intercept point value in dBm to compute the factor, f,
that scales the input signal before the amplifier object applies the nonlinearity:

%
Famian @ =u-—

6-230

AnalyzedResult property

w

Limiting the scaled input signal to a maximum value of 1.

3

FAM/AM(U)ZM—%

where u is the magnitude of the scaled input signal, which is a unitless
normalized input voltage.

Computing the scaled input signal by multiplying the amplifier input signal by f.

Applying an AM/AM conversion to the amplifier gain, according to the following
cubic polynomial equation:

The analyze method uses the data stored in the "NetworkData" property of the
rfckt.amplifier object to calculate the group delay values of the amplifier at the

frequencies specified in freq, as described in the analyze reference page.

The analyze method uses the data stored in the "NetworkData" property of the
rfckt.amplifier object to calculate the S-parameter values of the amplifier at the
frequencies specified in freq. If the "NetworkData" property contains network Y-
or Z-parameters, the analyze method first converts the parameters to S-parameters.

Using the interpolation method you specify with the " IntpType” property, the

analyze method interpolates the S-parameter values to determine their values at the
specified frequencies.

Specifically, the analyze method orders the S-parameters according to the ascending

order of their frequencies, f,,. It then interpolates the S-parameters, using the
MATLAB interpl function. For example, the curve in the following diagram

llustrates the result of interpolating the S;; parameters at five different frequencies.

Interpolated S, parameter values

Original S, parameter values

f, f fy fs fy~+—— Frequencies in ascending
order of magnitude
min) (fmax)

6-231

6 Objects — Alphabetical List

6-232

For more information, see “One-Dimensional Interpolation” and the interpl
reference page in the MATLAB documentation.

As shown in the preceding diagram, the analyze method uses the parameter values
at frin, the minimum input frequency, for all frequencies smaller than f,,;,. It uses the
parameters values at f,,.;, the maximum input frequency, for all frequencies greater
than f,,... In both cases, the results may not be accurate, so you need to specify
network parameter values over a range of frequencies that is wide enough to account
for the amplifier behavior.

Examples

amp = rfckt.amplifier;
amp -AnalyzedResult

ans =

Name: "Data object”

Freq: [191x1 double]

S _Parameters: [2x2x191 double]
GroupDelay: [191x1 double]

NF: [191x1 double]

OIP3: [191x1 double]

Z0: 50
ZS: 50
ZL: 50

IntpType: “Linear”

IntpType property

IntpType property

Class: rfckt.amplifier
Package: rfckt

Interpolation method

Values

"Linear"® (default), "Spline"”, or "Cubic”

Description

The analyze method is flexible in that it does not require the frequencies of the specified
S-parameters to match the requested analysis frequencies. If needed, analyze applies
the interpolation and extrapolation method specified in the IntpType property to the
specified data to create a new set of data at the requested analysis frequencies. The
following table lists the available interpolation methods and describes each one.

Method Description

Linear (default) Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation
Examples

amp = rfckt.amplifier;
amp. IntpType = "cubic”

amp =
Name: “"Amplifier”
nPort: 2

AnalyzedResult: [1x1 rfdata.data]
IntpType: "Cubic”

6-233

6 Objects — Alphabetical List

NetworkData: [1x1 rfdata.network]
NoiseData: [1x1 rfdata.noise]
NonlinearData: [1x1 rfdata.power]

6-234

Name property

Name property

Class: rfckt.amplifier
Package: rfckt

Object name

Values

"Amplifier-®

Description

Read-only string that contains the name of the object.

Examples

amp = rfckt.amplifier;
amp -Name

ans =

Amplifier

6-235

6 Objects — Alphabetical List

6-236

NetworkData property

Class: rfckt.amplifier
Package: rfckt

Network parameter information

Values

rfdata.network object

Description

An rfdata.network object that stores network parameter data. The default network
parameter values are taken from the "default.amp® data file.

Examples

amp = rfckt.amplifier;
amp . NetworkData

ans =
Name: "Network parameters”

Type: °S_PARAMETERS®

Freq: [191x1 double]

Data: [2x2x191 double]

Z0: 50

NoiseData property

NoiseData property

Class: rfckt.amplifier
Package: rfckt

Noise information

Values

Scalar noise figure in decibels, rfdata.noise object or rfdata.nf object

Description

A scalar value or object that stores noise data. The default is an rfdata.noise object
whose values are taken from the "default.amp” data file.

Examples

amp = rfckt.amplifier;
amp .NoiseData

ans =

Name: "Spot noise data*
Freq: [9x1 double]
FMIN: [9x1 double]
GAMMAOPT: [9x1 double]
RN: [9x1 double]

6-237

6 Objects — Alphabetical List

6-238

NonlinearData property

Class: rfckt.amplifier
Package: rfckt

Nonlinearity information

Values

Scalar OIP3 in decibels relative to one milliwatt, rfdata.power object or rfdata. ip3
object

Description

A scalar value or object that stores nonlinearity data. The default is an rfdata.power
object whose values are taken from the "default._amp” data file.

Note: If you set NonLinearData using rfdata. ip3 or rfdata.power, then the
property is converted from scalar OIP3 format to the format of rfdata. ip3 or
rfdata.power.

Examples

amp = rfckt.amplifier;
amp -NonlinearData

ans =

Name: "Power data“”
Freq: 2.1000e+009

Pin: {[20x1 double]l}
Pout: {[20x1 double]l}
Phase: {[20x1 double]}

nPort property

nPort property

Class: rfckt.amplifier
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

amp = rfckt.amplifier;
amp.nPort

ans =

6-239

6 Objects — Alphabetical List

6-240

AnalyzedResult property

Class: rfckt.cascade
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

The analyze method computes the AnalyzedResult property using the data stored in
the Ckts property as follows:

* The analyze method starts calculating the ABCD-parameters of the cascaded
network by converting each component network's parameters to an ABCD-parameters
matrix. The figure shows a cascaded network consisting of two 2-port networks, each
represented by its ABCD matrix.

The analyze method then calculates the ABCD-parameter matrix for the cascaded
network by calculating the product of the ABCD matrices of the individual networks.

The following figure shows a cascaded network consisting of two 2-port networks,
each represented by its ABCD-parameters.

N

D) . cr o
The following equation illustrates calculations of the ABCD-parameters for two 2-port
networks.

AnalyzedResult property

BO A" BOA" B'LC

%D%H@ pHE Db

Finally, analyze converts the ABCD-parameters of the cascaded network to S-
parameters at the frequencies specified in the analyze input argument freq.

+ The analyze method calculates the noise figure for an N-element cascade. First, the
method calculates noise correlation matrices C,' and C,”, corresponding to the first
two matrices in the cascade, using the following equation:

g R, M_R YoptDE
C, = 2kT D) 2 C
M—R Y Y L
E 9 n-+ opt | pt| E

where K is Boltzmann's constant, and T is the noise temperature in Kelvin.

The method combines C4' and C4”into a single correlation matrix C, using the
equation

A BO»MA B’
Cp = CA"‘E:, DECAES' D’E

By applying this equation recursively, the method obtains a noise correlation matrix
for the entire cascade. The method then calculates the noise factor, F, from the noise
correlation matrix of as follows:

2'Cyz
2k TRe{Zg}
010
o=

=0 .0
&s B

=1+

In the two preceding equations, Zg is the nominal impedance, which is 50 ohms, and
z" is the Hermitian conjugation of z.
6-241

6 Objects — Alphabetical List

6-242

* The analyze method calculates the output power at the third-order intercept point
(OIP3) for an N-element cascade using the following equation:

1
1 1 1
+ +...+
OIP; ;v Gy [OIP3 x4 Gy [Gy-1 0. [Gy [OIP3

OIP, =

where G, is the gain of the nth element of the cascade and OIP; y is the OIP; of the n't
element.

+ The analyze method uses the cascaded S-parameters to calculate the group delay
values at the frequencies specified in the analyze input argument freq, as described
in the analyze reference page.

Examples

Analyze a cascade of three circuit objects:

amp = rfckt.amplifier("IntpType~, “cubic™);
tx1 = rfckt.txline;
t™~2 = rfckt.txline;

casc = rfckt._.cascade("Ckts",{tx1l,amp,tx2});
analyze(casc,[1e9:1e7:2e9]);
casc.AnalyzedResult

References

Hillbrand, H. and P.H. Russer, “An Efficient Method for Computer Aided Noise Analysis
of Linear Amplifier Networks,” IEEE Transactions on Circuits and Systems, Vol. CAS-23,
Number 4, pp. 235-238, 1976.

Ckts property

Ckts property

Class: rfckt.cascade
Package: rfckt

Circuit objects in network

Values

Cell

Description

Cell array containing handles to all circuit objects in the network, in order from source to
load. All circuits must be 2-port. This property is empty by default.

Examples

amp = rfckt.amplifier("IntpType", "cubic”);
tx1l = rfckt.txline;

t>2 = rfckt.txline;

casc = rfckt.cascade;
casc.Ckts = {tx1l,amp,tx2};
casc.Ckts

ans =

[1x1 rfckt.txline] [1x1 rfckt.amplifier] [1x1 rfckt.txline]

6-243

6 Objects — Alphabetical List

6-244

Name property

Class: rfckt.cascade
Package: rfckt

Object name

Values

"Cascaded Network*

Description

Read-only string that contains the name of the object.

Examples

casc = rfckt.cascade;
casc.Name

ans =

Cascaded Network

nPort property

nPort property

Class: rfckt.cascade
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

casc = rfckt.cascade;
casc.nPort

ans =

6-245

6 Objects — Alphabetical List

6-246

AnalyzedResult property

Class: rfckt.coaxial
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

The analyze method treats the transmission line as a 2-port linear network. It computes
the AnalyzedResult property of a stub or as a stubless line using the data stored in the
rfckt.coaxial object properties as follows:

+ If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The analyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

AnalyzedResult property

A ekd + e—kd
B 2
ZO * ekd —kd
(o)
2
o ohd _ gk
2%Z,
Do ekd + e—kd
2

Zo and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed in
terms of the resistance (R), inductance (L), conductance (G), and capacitance (C) per
unit length (meters) as follows:

5 - [R+ 20
0 = AT o
G+ j2rnfC

k =k, + jk =/(R +j21¥L)G +j21FC)

where
1 o1 10
R=——— +—
271’-O-cond5(fond E; bH
2 ! EH
_ 2nwe’
7 lnDb]
HH
2re

i In % ﬁ
In these equations:

6-247

6 Objects — Alphabetical List

* ais the radius of the inner conductor.

+ b is the radius of the outer conductor.
Ocond 18 the conductivity in the conductor.

* 1 1s the permeability of the dielectric.

* £1s the permittivity of the dielectric.

+ &£"is the imaginary part of ¢, £” = gog,tan §, where:

* &0 1s the permittivity of free space.
* g.1s the EpsilonR property value.
* tan § is the LossTangent property value.

* Ocong 18 the skin depth of the conductor, which the method calculates as

1/\nfuc . q -

f1s a vector of modeling frequencies determined by the Outport block.

+ If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt®, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

[=]
-
=]
=]
.
=]

[=]
_ml
=

[=]

[«]
"'”J,
=~

[]

Z;, 1s the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

6-248

AnalyzedResult property

1
0
1/ Z,
1

Saw»
I

When you set the StubMode property to "Series”, the 2-port network consists of a
series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

o 4 o a 4 o
Zin | L |

o] o]

Z;, is the input impedance of the series circuit. The ABCD-parameters for the series
stub are calculated as

1
Zin
0
1

Saw»>
I

The analyze method uses the S-parameters to calculate the group delay values at the

frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

Examples

tx1 = rfckt.coaxial;
analyze(tx1,[1e9,2e9,3e9]);
tx1.AnalyzedResult

ans =

6-249

6 Objects — Alphabetical List

6-250

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50

ZS: 50

ZL: 50

IntpType: “Linear”

EpsilonR property

EpsilonR property

Class: rfckt.coaxial
Package: rfckt

Relative permittivity of dielectric

Values

Scalar

Description

The ratio of the permittivity of the dielectric, &, to the permittivity of free space, 9. The
default value is 2. 3.

Examples

Change the relative permittivity of the dielectric:

txl=rfckt.coaxial;
tx1.EpsilonR=2.7;

6-251

6 Objects — Alphabetical List

InnerRadius property

Class: rfckt.coaxial
Package: rfckt

Inner conductor radius

Values

Scalar

Description

The radius of the inner conductor, in meters. The default is 7.25e-4.

Examples

txl=rfckt.coaxial;
tx1.InnerRadius=2.5e-4;

6-252

LineLength property

LineLength property

Class: rfckt.coaxial
Package: rfckt

Transmission line length

Values

Scalar

Description

The physical length of the transmission line in meters. The default is 0.01.

Examples

tx1 = rfckt.coaxial;
txl.LineLength = 0.001;

6-253

6 Objects — Alphabetical List

LossTangent property

Class: rfckt.coaxial
Package: rfckt

Tangent of loss angle

Values

Scalar

Description

The loss angle tangent of the dielectric. The default is O.

Examples

txl=rfckt.coaxial;
tx1.LossTangent=0.002;

6-254

MuR property

MuR property

Class: rfckt.coaxial
Package: rfckt

Relative permeability of dielectric

Values

Scalar

Description

The ratio of the permeability of the dielectric, i, to the permeability in free space, uo. The
default value is 1.

Examples

Change the relative permeability of the dielectric:

txl=rfckt.coaxial;
tx1.MuR=0.8;

6-255

6 Objects — Alphabetical List

6-256

Name property

Class: rfckt.coaxial
Package: rfckt

Object name

Values

"Coaxial Transmission Line"

Description

Read-only string that contains the name of the object.

Examples

tx1 = rfckt.coaxial;
tx1.Name

ans =

Coaxial Transmission Line

OuterRadius property

OuterRadius property

Class: rfckt.coaxial
Package: rfckt

Outer conductor radius

Values

Scalar

Description

The radius of the outer conductor, in meters. The default is 0.0026.

Examples

txl=rfckt.coaxial;
tx1.0uterRadius=0.0031;

6-257

6 Objects — Alphabetical List

SigmaCond property

Class: rfckt.coaxial
Package: rfckt

Conductor conductivity

Values

Scalar

Description

Conductivity, in Siemens per meter (S/m), of the conductor. The default is InF.

Examples

txl=rfckt.coaxial;
tx1.SigmaCond=5.81e7;

6-258

StubMode property

StubMode property

Class: rfckt.coaxial
Package: rfckt

Type of stub

Values

"NotAStub*® (default), "Series”, or "Shunt”

Description

String that specifies what type of stub, if any, to include in the transmission line model.

Examples

tx1 = rfckt.coaxial;
tx1.StubMode = "Series”;

6-259

6 Objects — Alphabetical List

Termination property

Class: rfckt.coaxial
Package: rfckt

Stub transmission line termination

Values

"NotApplicable® (default), "Open*, or "Short".

Description
String that specifies what type of termination to use for "Shunt® and "Series” stub

modes. Termination is ignored if the line has no stub. Use "NotApplicable® when
StubMode is "NotAStub*®.

Examples

tx1 = rfckt.coaxial;
tx1.StubMode = "Series”;
tx1l.Termination = "Short";

6-260

nPort property

nPort property

Class: rfckt.coaxial
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

tx1l = rfckt.coaxial;
tx1l.nPort

ans =

6-261

6 Objects — Alphabetical List

6-262

AnalyzedResult property

Class: rfckt.cpw
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

The analyze method treats the transmission line as a 2-port linear network. It computes
the AnalyzedResult property of a stub or as a stubless line using the data stored in the
rfckt.cpw object properties as follows:

+ If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The analyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

AnalyzedResult property

A ekd +e—kd
B 2
ZO * ekd —kd
O
2
o ohd _ gk
2%Z,
Do ekd +e—kd
2

Zo and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed in
terms of the specified conductor strip width, slot width, substrate height, conductor
strip thickness, relative permittivity constant, conductivity and dielectric loss tangent
of the transmission line, as described in [1].

If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt”, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

b2

Z;, 1s the input impedance of the shunt circuit. The ABCD-parameters for the shunt
stub are calculated as:

6-263

6 Objects — Alphabetical List

6-264

1
0
1/ Z,
1

Saw»
I

When you set the StubMode property to "Series”, the 2-port network consists of a
series transmission line that you can terminate with either a short circuit or an open
circuit as shown in the following figure.

n 4+ o a 4+ o
z:'n | z:'n |

o] o]

Z;, 1s the input impedance of the series circuit. The ABCD-parameters for the series
stub are calculated as:

1
Zin
0
1

Daw»
1

The analyze method uses the S-parameters to calculate the group delay values at the

frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

Examples

tx1 = rfckt.cpw;
analyze(tx1,[1e9,2e9,3e9]);
tx1l.AnalyzedResult

ans =

AnalyzedResult property

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
NF: [3x1 double]

GroupDelay: [3x1 double]
OIP3: [3x1 double]

Z0: 50

ZS: 50

ZL: 50

IntpType: “Linear”

6-265

6 Objects — Alphabetical List

ConductorWidth property

Class: rfckt.cpw
Package: rfckt

Conductor width

Values

Scalar

Description

Physical width, in meters, of the conductor. The default is 0.6e-4.

Examples

tx1l=rfckt._cpw;
tx1.ConductorWidth=0.001;

6-266

EpsilonR property

EpsilonR property

Class: rfckt.cpw
Package: rfckt

Relative permittivity of dielectric

Values

Scalar

Description

The ratio of the permittivity of the dielectric, &, to the permittivity of free space, 9. The
default value is 9.8.

Examples

Change the relative permittivity of the dielectric:

tx1l=rfckt._cpw;
tx1.EpsilonR=2.7;

6-267

6 Objects — Alphabetical List

Height property

Class: rfckt.cpw
Package: rfckt

Dielectric thickness

Values

Scalar

Description

Physical height, in meters, of the dielectric on which the conductor resides. The default is
0.635e-4.

Examples

tx1l=rfckt._cpw;
tx1.Height=0.001;

6-268

LineLength property

LineLength property

Class: rfckt.cpw
Package: rfckt

Transmission line length

Values

Scalar

Description

The physical length of the transmission line in meters. The default is 0.01.

Examples

tx1 = rfckt._cpw;
txl.LineLength = 0.001;

6-269

6 Objects — Alphabetical List

LossTangent property

Class: rfckt.cpw
Package: rfckt

Tangent of loss angle

Values

Scalar

Description

The loss angle tangent of the dielectric. The default is O.

Examples

tx1 = rfckt._cpw;
tx1l.LossTangent

ans =

0

6-270

Name property

Name property

Class: rfckt.cpw
Package: rfckt

Object name

Values

"Coplanar Waveguide Transmission Line-"

Description

Read-only string that contains the name of the object.

Examples

tx1 = rfckt._cpw;
tx1.Name

ans =

Coplanar Waveguide Transmission Line

6-271

6 Objects — Alphabetical List

SigmaCond property

Class: rfckt.cpw
Package: rfckt

Conductor conductivity

Values

Scalar

Description

Conductivity, in Siemens per meter (S/m), of the conductor. The default is InF.

Examples

tx1l=rfckt._cpw;
tx1.SigmaCond=5.81e7;

6-272

SlotWidth property

SlotWidth property

Class: rfckt.cpw
Package: rfckt

Width of slot

Values

Scalar

Description

Physical width, in meters, of the slot. The default is 0.2e-4.

Examples

tx1l=rfckt._cpw;
t~x1.SlotWidth=0.002;

6-273

6 Objects — Alphabetical List

StubMode property

Class: rfckt.cpw
Package: rfckt

Type of stub

Values

"NotAStub*® (default), "Series”, or "Shunt”

Description

String that specifies what type of stub, if any, to include in the transmission line model.

Examples

tx1 = rfckt._cpw;
tx1.StubMode = "Series”;

6-274

Termination property

Termination property

Class: rfckt.cpw
Package: rfckt

Stub transmission line termination

Values

"NotApplicable® (default), "Open*, or "Short".

Description
String that specifies what type of termination to use for "Shunt®and "Series” stub

modes. Termination is ignored if the line has no stub. Use "NotApplicable® when
StubMode is "NotAStub*®.

Examples

tx1 = rfckt.cpw;
tx1.StubMode = "Series”;
tx1l.Termination = "Short";

6-275

6 Objects — Alphabetical List

Thickness property

Class: rfckt.cpw
Package: rfckt

Conductor thickness

Values

Scalar

Description

Physical thickness, in meters, of the conductor. The default is 0.005e-6.

Examples

tx1l=rfckt._cpw;
tx1.Thickness=2e-5;

6-276

nPort property

nPort property

Class: rfckt.cpw
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

tx1 = rfckt.cpw;
tx1l.nPort

ans =

6-277

6 Objects — Alphabetical List

6-278

AnalyzedResult property

Class: rfckt.datafile
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. The default is a 1-by-1 rfdata.data object that contains the S-parameters,
noise figure, OIP3, and group delay values that are the result of analyzing the values
stored in the passive.s2p file at the frequencies stored in this file.

The analyze method computes the AnalyzedResult property using the data stored
in the Fi le object property. If the file you specify with this property contains network
Y- or Z-parameters, analyze first converts these parameters, as they exist in the
rfckt.datafile object, to S-parameters. Using the interpolation method you specify
with the " IntpType" property, analyze interpolates the S-parameters to determine
the S-parameters at the specified frequencies. Specifically, analyze orders the S-
parameters according to the ascending order of their frequencies, f,. It then interpolates
the S-parameters, using the MATLAB interpl function. For example, the curve in

the following diagram illustrates the result of interpolating the S;; parameters at five
different frequencies.

AnalyzedResult property

Interpolated S,, parameter values

LT ‘7 Original S, parameter values

f, 1, fy fs fy~— Frequencies in ascending
order of magnitude
min) (fmax)

For more information, see “One-Dimensional Interpolation” and the interpl reference
page in the MATLAB documentation.

As shown in the preceding diagram, the analyze method uses the parameter values

at fiin, the minimum input frequency, for all frequencies smaller than f,,;,. It uses the
parameters values at f,4, the maximum input frequency, for all frequencies greater
than f,,... In both cases, the results may not be accurate, so you need to specify network
parameter values over a range of frequencies that is wide enough to account for the
component behavior.

The analyze method uses the S-parameters to calculate the group delay values at the
frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

Examples

data = rfckt.datafile;
data.AnalyzedResult

ans =

Name: "Data object*

Freq: [202x1 double]

S _Parameters: [2x2x202 double]
GroupDelay: [202x1 double]

NF: [202x1 double]

OIP3: [202x1 double]

6-279

6 Objects — Alphabetical List

Z0: 50
ZS: 50
ZL: 50
IntpType: "Linear”

6-280

File property

File property

Class: rfckt.datafile
Package: rfckt

File containing circuit data

Values

String

Description

The name of the .snp, .ynp, .znp, or -hnp file describing the circuit, where n is the
number of ports. The default file name is "passive.s2p”.

Examples

data=rfckt.datafile;
data.File="default.s2p”

data =

Name: "Data File~

nPort: 2

AnalyzedResult: [1x1 rfdata.data]
IntpType: “Linear”

File: "default.s2p”

6-281

6 Objects — Alphabetical List

IntpType property

Class: rfckt.datafile
Package: rfckt

Interpolation method

Values

"Linear"® (default), "Spline®, or "Cubic"

Description

The analyze method is flexible in that it does not require the frequencies of the specified
S-parameters to match the requested analysis frequencies. If needed, analyze applies
the interpolation and extrapolation method specified in the IntpType property to the
specified data to create a new set of data at the requested analysis frequencies. The
following table lists the available interpolation methods and describes each one.

Method Description

Linear (default) Linear interpolation

Spline Cubic spline interpolation

Cubic Piecewise cubic Hermite interpolation
Examples

data = rfckt.datafile;
data. IntpType = "cubic”;

6-282

Name property

Name property

Class: rfckt.datafile
Package: rfckt

Object name

Values

"Data object”

Description

Read-only string that contains the name of the object.

Examples

data = rfckt.datafile;
data.Name

ans =

Data object

6-283

6 Objects — Alphabetical List

nPort property

Class: rfckt.datafile
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

data = rfckt.datafile;
data.nPort

ans =

6-284

AnalyzedResult property

AnalyzedResult property

Class: rfckt.delay
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

The analyze method treats the delay line, which can be lossy or lossless, as a 2-port
linear network. It computes the AnalyzedResult property of the delay line using the
data stored in the rfckt.delay object properties by calculating the S-parameters for
the specified frequencies. This calculation is based on the values of the delay line's 10ss,
a, and time delay, D.

0S;; =0
0 11 L,
DS21 - e_p
0

0S22 =0

Above, p = a, + if5, where q, is the attenuation coefficient and £ is the wave number. The
attenuation coefficient q, is related to the loss, a, by

o, = -In(10%/20)

a

and the wave number f is related to the time delay, D, by

6-285

6 Objects — Alphabetical List

B=2nD
where fis the frequency range specified in the analyze input argument freq.

The analyze method uses the S-parameters to calculate the group delay values at the
frequencies specified in the analyze input argument freq, as described in the analyze
reference page.

Examples

Compute S-parameters, noise figure, OIP3, and group delay values:

del = rfckt.delay;
analyze(del,[1e9,2e9,3e9]);
del _AnalyzedResult

6-286

Loss property

Loss property

Class: rfckt.delay
Package: rfckt

Delay line loss

Values

Scalar

Description

Line loss value, in decibels. Line loss is the reduction in strength of the signal as it
travels over the delay line and must be nonnegative. The default is O.

Examples

del = rfckt.delay;
del .Loss = 10;

6-287

6 Objects — Alphabetical List

6-288

Name property

Class: rfckt.delay
Package: rfckt

Object name

Values

"Delay Line"

Description

Read-only string that contains the name of the object.

Examples

del = rfckt.delay;
del _.Name

ans =

Delay Line

TimeDelay property

TimeDelay property

Class: rfckt.delay
Package: rfckt

Delay introduced by line

Values

Scalar

Description

The amount of time delay, in seconds. The default is 1.0000e-012.

Examples

del = rfckt.delay;
del_TimeDelay = 1le-9;

6-289

6 Objects — Alphabetical List

Z0 property

Class: rfckt.delay
Package: rfckt

Characteristic impedance

Values

Scalar

Description

The characteristic impedance, in ohms, of the delay line. The default is 50 ohms.

Examples

del = rfckt.delay;
del.Z0 = 75;

6-290

nPort property

nPort property

Class: rfckt.delay
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

del = rfckt.delay;
del .nPort

ans =

6-291

6 Objects — Alphabetical List

6-292

AnalyzedResult property

Class: rfckt.hybrid
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the Ckts property as follows:

* The analyze method first calculates the A matrix of the hybrid network. It starts
by converting each component network's parameters to an A matrix. The following
figure shows a hybrid connected network consisting of two 2-port networks, each
represented by its A matrix,

[A]

[h']

where

AnalyzedResult property

[h'] — B’Lll’ h12’ E
9121' hZ2’ H
[n] = %11" hig E
Bt hes H
+ The analyze method then calculates the A matrix for the hybrid network by

calculating the sum of the A matrices of the individual networks. The following
equation illustrates the calculations for two 2-port networks.

1] = hiy +hyy" hyg +hyy
hot +hyy hog +hay

* Finally, analyze converts the A matrix of the hybrid network to S-parameters at the
frequencies specified in the analyze input argument freq.

The analyze method uses the hybrid S-parameters to calculate the group delay values
at the frequencies specified in the analyze input argument Freq, as described in the
analyze reference page.

Examples

t~x1 = rfckt.txline;

t™~2 = rfckt.txline;

hyb = rfckt_hybrid("Ckts",{tx1,tx2})

analyze(hyb,[1e9:1e7:2e9]);
hyb.AnalyzedResult

ans =

Name: "Data object-
Freq: [101x1 double]
S_Parameters: [2x2x101 double]
GroupDelay: [101x1 double]
NF: [101x1 double]
OIP3: [101x1 double]
Z0: 50
ZS: 50

6-293

6 Objects — Alphabetical List

ZL: 50
IntpType: "Linear”

6-294

Ckts property

Ckts property

Class: rfckt.hybrid
Package: rfckt

Circuit objects in network

Values

Cell

Description

Cell array containing handles to all circuit objects in the network. All circuits must be 2-

port and linear. This property is empty by default.

Examples

tx1l = rfckt.txline;
t>2 = rfckt.txline;
hyb = rfckt.hybrid;
hyb.Ckts = {tx1,tx2};
hyb.Ckts

ans =

[1x1 rfckt.txline] [1x1 rfckt.txline]

6-295

6 Objects — Alphabetical List

6-296

Name property

Class: rfckt.hybrid
Package: rfckt

Object name

Values

"Hybrid Connected Network*®

Description

Read-only string that contains the name of the object.

Examples

hyb = rfckt_hybrid;
hyb _.Name

ans =

Hybrid Connected Network

nPort property

nPort property

Class: rfckt.hybrid
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

hyb = rfckt.hybrid;
hyb.nPort

ans =

6-297

6 Objects — Alphabetical List

6-298

AnalyzedResult property

Class: rfckt.hybridg
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

The analyze method computes the S-parameters of the AnalyzedResult property
using the data stored in the Ckts property as follows:

1 The analyze method first calculates the g matrix of the inverse hybrid network.
It starts by converting each component network's parameters to a g matrix. The
following figure shows an inverse hybrid connected network consisting of two 2-port
networks, each represented by its g matrix,

[¢']

[g"]

where

AnalyzedResult property

%11 812 0

%2 1 2'

"= %11 g12" o
[g] Heor' g0 E

2 The analyze method then calculates the g matrix for the inverse hybrid network
by calculating the sum of the g matrices of the individual networks. The following
equation illustrates the calculations for two 2-port networks.

[g]= g1 +811 &2 +&12
891 T 821 822 822

3 Finally, analyze converts the g matrix of the inverse hybrid network to S-
parameters at the frequencies specified in the analyze input argument freq.

The analyze method uses the inverse hybrid S-parameters to calculate the group delay
values at the frequencies specified in the analyze input argument freq, as described in
the analyze reference page.

Examples

t~x1 = rfckt.txline;

t™~2 = rfckt.txline;

invhyb = rfckt_hybridg("Ckts*,{tx1l,tx2})
analyze(invhyb,[1e9:1e7:2e9]);
invhyb_AnalyzedResult

ans =

Name: "Data object-
Freq: [101x1 double]
S_Parameters: [2x2x101 double]
GroupDelay: [101x1 double]
NF: [101x1 double]
OIP3: [101x1 double]
Z0: 50
ZS: 50

6-299

6 Objects — Alphabetical List

ZL: 50
IntpType: "Linear”

6-300

Ckts property

Ckts property

Class: rfckt.hybridg
Package: rfckt

Circuit objects in network

Values

Cell

Description

Cell array containing handles to all circuit objects in the network. All circuits must be 2-
port and linear. This property is empty by default.

Examples

t~x1 rfckt.txline;

t™>2 rfckt.txline;
invhyb = rfckt.hybridg;
invhyb.Ckts = {tx1,tx2};
invhyb.Ckts

ans =

[1x1 rfckt.txline] [1x1 rfckt.txline]

6-301

6 Objects — Alphabetical List

6-302

Name property

Class: rfckt.hybridg
Package: rfckt

Object name

Values

"Hybrid G Connected Network-

Description

Read-only string that contains the name of the object.

Examples

invhyb = rfckt_hybridg;
invhyb_Name

ans =

Hybrid G Connected Network

nPort property

nPort property

Class: rfckt.hybridg
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

invhyb = rfckt._hybridg;
invhyb._nPort

ans =

6-303

6 Objects — Alphabetical List

AnalyzedResult property

Class: rfckt.lcbandpasspi
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

Examples

filter = rfckt.lcbandpasspi;
analyze(Ffilter,[1e9,2e9,3e9]);
filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50

ZS: 50

ZL: 50

IntpType: “Linear”

6-304

C property

C property

Class: rfckt.lcbandpasspi
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitance values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to the length of the vector

you provide for "L". All values must be strictly positive. The default is [0.3579e-10,
0.0118e-10, 0.3579e-10].

Examples

filter=rfckt. Icbandpasspi;
filter.C = [10.1 4.5 14_2]*1e-12;

6-305

6 Objects — Alphabetical List

L property

Class: rfckt.lcbandpasspi
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the
network. The length of the inductance vector must be equal to the length of the vector

you provide for "C*". All values must be strictly positive. The default is [0.0144e-7,
0.4395e-7, 0.0144e-7].

Examples

filter = rfckt.Icbandpasspi;
filter.L = [3.1 5.9 16.3]*1e-9;

6-306

Name property

Name property

Class: rfckt.lcbandpasspi
Package: rfckt

Object name

Values

"LC Bandpass Pi-*

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt.lcbandpasspi;
filter.Name

ans =

LC Bandpass Pi

6-307

6 Objects — Alphabetical List

nPort property

Class: rfckt.lcbandpasspi
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.lcbandpasspi;
filter.nPort

ans =

6-308

AnalyzedResult property

AnalyzedResult property

Class: rfckt.Icbandpasstee
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze

method. This property is empty by default.

Examples

filter = rfckt.Icbandpasstee;

analyze(Ffilter,[1e9,2e9,3e9]);

filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50
ZS: 50
ZL: 50

IntpType: “Linear”

6-309

6 Objects — Alphabetical List

C property

Class: rfckt.Icbandpasstee
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitance values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to the length of the vector

you provide for "L". All values must be strictly positive. The default is [0.0186e-10,
0.1716e-10, 0.0186e-10].

Examples

filter=rfckt. Icbandpasstee;
filter.C = [10.1 4.5 14_.2]*1e-12;

6-310

L property

L property

Class: rfckt.Icbandpasstee
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the
network. The length of the inductance vector must be equal to the length of the vector

you provide for "C*". All values must be strictly positive. The default is [0.2781e-7,
0.0301le-7, 0.2781e-7].

Examples

filter = rfckt.Icbandpasstee;
filter.L = [3.1 5.9 16.3]*1e-9;

6-311

6 Objects — Alphabetical List

Name property

Class: rfckt.Icbandpasstee
Package: rfckt

Object name

Values

"LC Bandpass Tee*

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt.lcbandpasstee;
filter_Name

ans =

LC Bandpass Tee

6-312

nPort property

nPort property

Class: rfckt.Icbandpasstee
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.Icbandpasstee;
filter.nPort

ans =

6-313

6 Objects — Alphabetical List

AnalyzedResult property

Class: rfckt.lcbandstoppi
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

Examples

filter = rfckt.lcbandstoppi;
analyze(Ffilter,[1e9,2e9,3e9]);
filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50

ZS: 50

ZL: 50

IntpType: “Linear”

6-314

C property

C property

Class: rfckt.lcbandstoppi
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitance values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to the length of the vector

you provide for "L". All values must be strictly positive. The default is [0.0184e-10,
0.2287e-10, 0.0184e-10].

Examples

filter=rfckt. Icbandstoppi;
filter.C = [10.1 4.5 14_2]*1e-12;

6-315

6 Objects — Alphabetical List

L property

Class: rfckt.lcbandstoppi
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the
network. The length of the inductance vector must be equal to the length of the vector

you provide for "C*". All values must be strictly positive. The default is [0.2809e-7,
0.0226e-7, 0.2809e-7].

Examples

filter = rfckt.Icbandstoppi;
filter.L = [3.1 5.9 16.3]*1e-9;

6-316

Name property

Name property

Class: rfckt.lcbandstoppi
Package: rfckt

Object name

Values

"LC Bandstop Pi-*

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt.lcbandstoppi;
filter.Name

ans =

LC Bandstop Pi

6-317

6 Objects — Alphabetical List

nPort property

Class: rfckt.lcbandstoppi
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.lcbandstoppi;
filter.nPort

ans =

6-318

AnalyzedResult property

AnalyzedResult property

Class: rfckt.lcbandstoptee
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze

method. This property is empty by default.

Examples

filter = rfckt.Icbandstoptee;

analyze(Ffilter,[1e9,2e9,3e9]);

filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50
ZS: 50
ZL: 50

IntpType: “Linear”

6-319

6 Objects — Alphabetical List

C property

Class: rfckt.lcbandstoptee
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitance values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to the length of the vector

you provide for "L". All values must be strictly positive. The default is [0.1852e-10,
0.0105e-10, 0.1852e-10].

Examples

filter=rfckt. Icbandstoptee;
filter.C = [10.1 4.5 14_.2]*1e-12;

6-320

L property

L property

Class: rfckt.lcbandstoptee
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the
network. The length of the inductance vector must be equal to the length of the vector

you provide for "C*". All values must be strictly positive. The default is [0.0279e-7,
0.4932e-7, 0.0279e-7].

Examples

filter = rfckt.Icbandstoptee;
filter.L = [3.1 5.9 16.3]*1e-9;

6-321

6 Objects — Alphabetical List

6-322

Name property

Class: rfckt.lcbandstoptee
Package: rfckt

Object name

Values

"LC Bandstop Tee*

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt.lcbandstoptee;
filter_Name

ans =

LC Bandstop Tee

nPort property

nPort property

Class: rfckt.lcbandstoptee
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.Icbandstoptee;
filter.nPort

ans =

6-323

6 Objects — Alphabetical List

AnalyzedResult property

Class: rfckt.lchighpasspi
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

Examples

filter = rfckt.lIchighpasspi;
analyze(Ffilter,[1e9,2e9,3e9]);
filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50

ZS: 50

ZL: 50

IntpType: “Linear”

6-324

C property

C property

Class: rfckt.lchighpasspi
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitance values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to the length of the vector

you provide for "L". All values must be strictly positive. The default is [0.1188e-5,
0.1188e-5].

Examples

filter=rfckt.Ichighpasspi;
filter.C = [10.1 4.5 14_.2]*1e-12;

6-325

6 Objects — Alphabetical List

L property

Class: rfckt.lchighpasspi
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the

network. The length of the inductance vector must be equal to the length of the vector
you provide for "C*". All values must be strictly positive. The default is [2.2363e-9].

Examples

Ffilter = rfckt._lchighpasspi;
filter.L = [3.1 5.9 16.3]*1e-9;

6-326

Name property

Name property

Class: rfckt.lchighpasspi
Package: rfckt

Object name

Values

"LC Highpass Pi*

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt._lchighpasspi;
filter.Name

ans =

LC Highpass Pi

6-327

6 Objects — Alphabetical List

nPort property

Class: rfckt.lchighpasspi
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.Ichighpasspi;
filter.nPort

ans =

6-328

AnalyzedResult property

AnalyzedResult property

Class: rfckt.lchighpasstee
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze

method. This property is empty by default.

Examples

filter = rfckt.Ichighpasstee;

analyze(Ffilter,[1e9,2e9,3e9]);

filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50
ZS: 50
ZL: 50

IntpType: “Linear”

6-329

6 Objects — Alphabetical List

C property

Class: rfckt.lchighpasstee
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitances values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to the length of the vector

you provide for "L". All values must be strictly positive. The default is [0.4752e-9,
0.4752e-9].

Examples

filter=rfckt.Ichighpasstee;
filter.C = [10.1 4.5 14_.2]*1e-12;

6-330

L property

L property

Class: rfckt.lchighpasstee
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the

network. The length of the inductance vector must be equal to the length of the vector
you provide for "C*". All values must be strictly positive. The default is [5.5907e-6].

Examples

Ffilter = rfckt.lIchighpasstee;
filter.L = [3.1 5.9 16.3]*1e-9;

6-331

6 Objects — Alphabetical List

6-332

Name property

Class: rfckt.lchighpasstee
Package: rfckt

Object name

Values

"LC Highpass Tee*

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt.lIchighpasstee;
filter.Name

ans =

LC Highpass Tee

nPort property

nPort property

Class: rfckt.lchighpasstee
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.Ichighpasstee;
filter.nPort

ans =

6-333

6 Objects — Alphabetical List

AnalyzedResult property

Class: rfckt.lclowpasspi
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

Examples

Ffilter = rfckt.Iclowpasspi;
analyze(Ffilter,[1e9,2e9,3e9]);
filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50

ZS: 50

ZL: 50

IntpType: “Linear”

6-334

C property

C property

Class: rfckt.lclowpasspi
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitance values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to or one greater than the

length of the vector you provide for "L . All values must be strictly positive. The default
is [0.5330e-8, 0.5330e-8].

Examples

filter=rfckt.Iclowpasspi;
filter.C = [10.1 4.5 14_2]*1e-12;

6-335

6 Objects — Alphabetical List

L property

Class: rfckt.lclowpasspi
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the
network. The length of the inductance vector must be equal to or one less than the length

of the vector you provide for "C". All values must be strictly positive. The default is
[2.8318e-6].

Examples

filter = rfckt.Iclowpasspi;
filter.L = [3.1 5.9 16.3]*1e-9;

6-336

Name property

Name property

Class: rfckt.lclowpasspi
Package: rfckt

Object name

Values

"LC Lowpass Pi-

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt.lIclowpasspi;
filter.Name

ans =

LC Lowpass Pi

6-337

6 Objects — Alphabetical List

nPort property

Class: rfckt.lclowpasspi
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.Iclowpasspi;
filter.nPort

ans =

6-338

AnalyzedResult property

AnalyzedResult property

Class: rfckt.Iclowpasstee
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

Examples

filter = rfckt.Iclowpasstee;
analyze(Ffilter,[1e9,2e9,3e9]);
filter.AnalyzedResult

ans =

Name: "Data object”

Freq: [3x1 double]
S_Parameters: [2x2x3 double]
GroupDelay: [3x1 double]

NF: [3x1 double]

OIP3: [3x1 double]

Z0: 50

ZS: 50

ZL: 50

IntpType: “Linear”

6-339

6 Objects — Alphabetical List

C property

Class: rfckt.Iclowpasstee
Package: rfckt

Capacitance data

Values

Vector

Description
Capacitance values in farads, in order from source to load, of all capacitors in the
network. The length of the capacitance vector must be equal to or one less than the

length of the vector you provide for "L . All values must be strictly positive. The default
is [1.1327e-9].

Examples

filter=rfckt.Iclowpasstee;
filter.C = [10.1 4.5 14_.2]*1e-12;

6-340

L property

L property

Class: rfckt.Iclowpasstee
Package: rfckt

Inductance data

Values

Vector

Description
Inductance values in henries, in order from source to load, of all inductors in the
network. The length of the inductance vector must be equal to or one greater than the

length of the vector you provide for "C*. All values must be strictly positive. The default
is [0.1332e-4, 0.1332e-4].

Examples

filter = rfckt.Iclowpasstee;
filter.L = [3.1 5.9 16.3]*1e-9;

6-341

6 Objects — Alphabetical List

6-342

Name property

Class: rfckt.Iclowpasstee
Package: rfckt

Object name

Values

"LC Lowpass Tee"

Description

Read-only string that contains the name of the object.

Examples

Ffilter = rfckt._lclowpasstee;
filter_Name

ans =

LC Lowpass Tee

nPort property

nPort property

Class: rfckt.Iclowpasstee
Package: rfckt

Number of ports

Values

2

Description

A read-only integer that indicates the object has two ports.

Examples

filter = rfckt.Iclowpasstee;
filter.nPort

ans =

6-343

6 Objects — Alphabetical List

6-344

AnalyzedResult property

Class: rfckt.microstrip
Package: rfckt

Computed S-parameters, noise figure, OIP3, and group delay values

Values

rfdata.data object

Description

Handle to an rfdata.data object that contains the S-parameters, noise figure, OIP3,
and group delay values computed over the specified frequency range using the analyze
method. This property is empty by default.

The analyze method treats the microstrip line as a 2-port linear network and models
the line as a transmission line with optional stubs. The analyze method computes
the AnalyzedResul t property of the transmission line using the data stored in the
rfckt.microstrip object properties as follows:

If you model the transmission line as a stubless line, the analyze method first
calculates the ABCD-parameters at each frequency contained in the modeling
frequencies vector. It then uses the abcd2s function to convert the ABCD-parameters
to S-parameters.

The anallyze method calculates the ABCD-parameters using the physical length of
the transmission line, d, and the complex propagation constant, k, using the following
equations:

AnalyzedResult property

A ekd +e—kd
B 2
ZO * ekd —kd
O
2
o ohd _ gk
2%Z,
Do ekd +e—kd
2

Zo and k are vectors whose elements correspond to the elements of f, the vector of
frequencies specified in the analyze input argument freq. Both can be expressed
in terms of the specified conductor strip width, substrate height, conductor strip
thickness, relative permittivity constant, conductivity, and dielectric loss tangent of
the microstrip line, as described in [1].

If you model the transmission line as a shunt or series stub, the analyze method first
calculates the ABCD-parameters at the specified frequencies. It then uses the abcd2s
function to convert the ABCD-parameters to S-parameters.

When you set the StubMode property to "Shunt”, the 2-port network consists of a
stub transmission line that you can terminate with either a short circuit or an open
circuit as s